Refine Your Search

Topic

Search Results

Standard

Filters, Conventional, Electromagnetic Interference Reduction General Specification For

2023-09-18
CURRENT
ARP1172A
This specification covers the general requirements for conventional AC and/or DC current carrying filter networks for the reduction of electromagnetic interference. A conventional filter is defined herein as a component containing definitive, lumped, R-L-C components and not employing distributed parameters as a required characteristic.
Standard

Alternative (Ecological) Method for Measuring Electronic Product Immunity to External Electromagnetic Fields

2023-03-20
CURRENT
ARP5889A
This method is used to define the immunity of electric and electronic apparatus and equipment (products) to radiated electromagnetic (EM) energy. This method is based on injecting the calibrated radio frequency currents (voltages) into external conductors and/or internal circuits of the product under test, measuring the strength of the EM field generated by this product and evaluating its immunity to the external EM field on the basis of the data obtained. The method can be utilized only when it is physically possible to connect the injector to the conductors and/or circuits mentioned before.
Standard

Coaxial Test Procedure to Measure the RF Shielding Characteristics of EMI Gasket Materials

2022-06-24
CURRENT
ARP1705C
The purpose of this procedure is to establish a technique for reliably and repeatedly measuring the RF shielding characteristics of EMI gasket materials and EMI gaskets against various joint surfaces. The procedure is also used to test the reliability of the gasketed joint combinations after being subjected to hostile environments.
Standard

Stripline Test Method to Characterize the Shielding Effectiveness of Conductive EMI Gaskets up to 40 GHz

2022-01-21
CURRENT
ARP6248
The purpose of this procedure is to establish a technique for reliably and repeatedly measuring the RF shielding characteristics of EMI conductive gasket materials and EMI conductive gaskets. Depending on the materials used for the construction of the measuring setup, the EMI conductive gaskets can be characterized against various joint surfaces. This standard will directly provide shielding effectiveness values up to 40 GHz, and will also be applicable for small samples of conductive EMI gaskets.
Standard

Guide to Certification of Aircraft in a High-Intensity Radiated Field (HIRF) Environment

2020-01-28
WIP
ARP5583B
This guide provides detailed information, guidance, and methods related to the Federal Aviation Administration Advisory Circular (AC)/Joint Airworthiness Authorities Advisory Material Joint (AMJ) 20-XXX, "Certification of Aircraft Electrical/Electronic Systems for Operation in the High Intensity Radiated Fields (HIRF) Environment" (draft). The AC/AMJ provides acceptable means, but not the only means, of compliance with Parts 23, 25, 27, and 29 of the Federal Aviation Regulations (FAR)/Joint Aviation Regulations (JAR) to prevent hazards to aircraft electrical and electronic systems due to HIRF produced by external transmitters. This guide is neither mandatory nor regulatory in nature and does not constitute a regulation or legal interpretation of the regulation. The information in this guide represents a collection of best engineering practices that have been used to certify aircraft HIRF protection.
Standard

Electromagnetic Compatibility Control Requirements Systems

2013-03-25
CURRENT
ARP4242A
This SAE Aerospace Recommended Practice (ARP) establishes overall system electromagnetic compatibility (EMC) control requirements. EMC includes the following: a Electromagnetic Environmental Effects (E3) b Electrostatic Discharge (ESD) c Electromagnetic Interference (EMI) d Electromagnetic Vulnerability (EMV) e Electromagnetic Pulse (EMP) f Hazards of Electromagnetic Radiation to Ordnance (HERO) g Hazards of Electromagnetic Radiation to Personnel (HERP) h Hazards of Electromagnetic Radiation to Fuels (HERF) i High Intensity Radiated Fields (HIRF) j Lightning Protection k Static Electricity I TEMPEST This document is intended to be used for the procurement of land, sea, air, or space systems by any procurement activity. Tailoring of specific requirements is necessary and Appendix A has been provided for guidance.
Standard

Control Plan/Technical Construction File

2013-03-25
CURRENT
ARP935B
This document contains a "sample" Control Plan with explanations as to the intended content of various sections. It also can serve as a sample technical construction file as specified by the European EMC Directive.
Standard

Electromagnetic Compatibility (EMC) System Design Checklist

2013-02-24
HISTORICAL
AIR1221
This checklist is to be used by project personnel to assure that factors required for adequate system electromagnetic compatibility are considered and incorporated into a program. It provides a ready reference of EMC management and documentation requirements for a particular program from preproposal thru acquisition. When considered with individual equipments comprising the system and the electromagnetic operational environment in which the system will operate, the checklist will aid in the preparation of an EMC analysis. The analysis will facilitate the development of system-dependent EMC criteria and detailed system, subsystem, and equipment design requirements ensuring electromagnetic compatibility.
Standard

Recommended Insertion Loss Test Methods for EMI Power Line Filters

2012-08-10
CURRENT
ARP4244A
This document presents standard methods to evaluate the common mode and differential mode insertion loss of passive electromagnetic interference power line filters from 10 kHz through 10 GHz. Insertion loss test methods for both quality assurance and performance prediction purposes are described. The performance prediction tests are selected to more closely approximate operating impedances. They are not intended to be inclusive or to represent worst case conditions. However, the methodology of this document can be used to determine the performance in an arbitrary impedance circuit.
Standard

Coaxial Test Procedure to Measure the RF Shielding Characteristics of EMI Gasket Materials

2012-06-14
HISTORICAL
ARP1705B
The purpose of this procedure is to establish a technique for reliably and repeatedly measuring the RF shielding characteristics of EMI gasket materials and EMI gaskets against various joint surfaces. The procedure is also used to test the reliability of the gasketed joint combinations after being subjected to hostile environments.
Standard

Guide to Certification of Aircraft in a High-Intensity Radiated Field (HIRF) Environment

2010-06-04
CURRENT
ARP5583A
This guide provides detailed information, guidance, and methods related to the Federal Aviation Administration (FAA) Advisory Circular (AC) 20-158 and European Aviation Safety Agency (EASA) draft Advisory Material Joint (AMJ), both titled "The Certification of Aircraft Electrical and Electronic Systems for Operation in the High-Intensity Radiated Fields (HIRF) Environment". The AC provides acceptable means, but not the only means, of compliance with Title 14, Code of Federal Regulations (14 CFR) 23.1308, 25.1317, 27.1317, and 29.1317, High-Intensity Radiated Fields (HIRF) protection for Aircraft Electrical and Electronic Systems, and applicable FAA HIRF Special Conditions to prevent hazards to aircraft electrical and electronic systems due to HIRF produced by external transmitters. It is also intended for this guide to provide the same information, guidance, and methods to the European Aviation Safety Agency (EASA) interim HIRF policies certification requirements.
Standard

Cabling Guidelines for Electromagnetic Compatibility

2009-11-22
CURRENT
AIR1394A
These cable practice recommendations tend toward design guidance rather than standardization. EMC achievement tests can be standardized, but the means for achievement should not be constrained. The material can best be described as an essay on cabling, and the theme is that a cable is just a part of a complete circuit, the interconnect circuit. Cable EMC performance is thus determined largely by circuit design; it is unrealistic to expect cabling techniques to compensate for improper impedance, symmetry or waveform in the circuit.
Standard

Spectrum Analyzers for Electromagnetic Interference Measurements

2009-11-22
CURRENT
AIR1255
This AIR was prepared to inform the aerospace industry about the electromagnetic interference measurement capability of spectrum analyzers. The spectrum analyzers considered are of the wide dispersion type which are electronically tuned over an octave or wider frequency range. The reason for limiting the AIR to this type of spectrum analyzer is that several manufacturers produce them as general-purpose instruments, and their use for EMI measurement will give significant time and cost savings. The objective of the AIR is to give a description of the spectrum analyzers, consider the analyzer parameters, and describe how the analyzers are usable for collection of EMI data. The operator of a spectrum analyzer should be thoroughly familiar with the analyzer and the technical concepts reviewed in this AIR before performing EMI measurements.
Standard

Alternative (Ecological) Method for Measuring Electronic Product Immunity to External Electromagnetic Fields

2008-08-25
HISTORICAL
ARP5889
This method is used to define the immunity of electric and electronic apparatus and equipment (products) to radiated electromagnetic (EM) energy. This method is based on injecting the calibrated radio frequency currents (voltages) into external conductors and/or internal circuits of the product under test, measuring the strength of the EM field generated by this product and evaluating its immunity to the external EM field on the basis of the data obtained. The method can be utilized only when it is physically possible to connect the injector to the conductors and/or circuits mentioned before.
Standard

Coaxial Test Procedure to Measure the RF Shielding Characteristics of EMI Gasket Materials

2006-04-20
HISTORICAL
ARP1705A
The purpose of this procedure is to establish a technique for reliably and repeatedly measuring the RF shielding characteristics of EMI gasket materials and EMI gaskets against various joint surfaces. The procedure is also used to test the reliability of the gasketed joint combinations after being subjected to hostile environments.
X