Refine Your Search

Topic

Search Results

Standard

Elastomer: Fluorosilicone Rubber (FVMQ), Fuel and Oil Resistant, High Strength, 45 – 55 Shore A Hardness, For Products in Fuel Systems / Lubricating Oils

2023-10-16
CURRENT
AMS3329D
This specification covers a high strength fluorosilicone (FVMQ) elastomer that can be used to manufacture product in the form of sheet, strip, tubing, extrusions, and molded shapes. This specification should not be used for molded rings, compression seals, molded O-ring cord, and molded in place gaskets for aeronautical and aerospace applications.
Standard

Elastomer: Fluorocarbon (FKM) Aircraft Engine Oil, Fuel and Hydraulic Fluid Resistant Low Temperature Sealing Tg -40 °F (-40 °C) / 70 to 80 Hardness, for Products in Aircraft Engine Oil, Fuel, and Hydraulics Systems

2023-03-20
CURRENT
AMS3353A
This specification covers a fluorocarbon elastomer that can be used to manufacture product in the form of sheet, strip, tubing, extrusions, and molded shapes. For molded rings, molded compression seals, and molded-in-place gaskets for aeronautical and aerospace applications, use the AMS7379 specification.
Standard

Elastomer: Chloroprene Rubber (CR) Weather Resistant 55 - 65

2022-06-13
CURRENT
AMS3241K
This specification covers a chloroprene (CR) rubber that can be used to manufacture product in the form of sheet, strip, tubing, extrusions, and molded shapes such as window channels, bumper pads, chafing strips, etc. For molded rings, compression seals, molded O-ring cord, and molded-in-place gaskets for aeronautical and aerospace applications, use the equivalent AMS7XXX specification.
Standard

Elastomer: Chloroprene Rubber (CR) Weather Resistant 35 - 45

2022-06-13
CURRENT
AMS3240L
This specification covers a chloroprene rubber (CR) that can be used to manufacture product in the form of sheet, strip, tubing, extrusions, and molded shapes such as window channels, bumper pads, chafing strips, etc. For molded rings, compression seals, molded O-ring cord, and molded-in-place gaskets for aeronautical and aerospace applications, use the equivalent AMS7XXX specification.
Standard

Sponge, Chloroprene (CR) Rubber, Soft

2022-03-01
CURRENT
AMS3197N
This specification covers a chloroprene (CR) rubber sponge in the form of sheet, strip, molded shapes, or other forms, as ordered.
Standard

Rubber: Vinyl-Methyl Silicone (VMQ) Hot Air Resistant Low Compression Set, 70 to 80 Type A Hardness for Seals in Hot Air Systems

2021-05-19
CURRENT
AMS7267H
This specification covers a silicone (VMQ) rubber in the form of molded rings. These rings have been used typically as sealing rings for service from -65 to +260 °C (-85 to +500 °F) in contact with air, but usage is not limited to such applications. The cross-section of such rings is usually not over 0.275 inch (6.98 mm) in diameter or thickness.
Standard

Elastomer: Methyl Phenyl Vinyl Silicone Rubber (PVMQ) Extreme Low-Temperature Resistant 15 - 30 Type A Hardness

2021-03-10
CURRENT
AMS3332G
This specification covers an extreme low-temperature-resistant Methyl Phenyl Vinyl Silicone(PVMQ) elastomer that can be used to manufacture product in the form of sheet, strip, extrusions, and molded shapes. For molded rings, compression seals, O-ring cord, and molded-in-place gaskets for aeronautical and aerospace applications, use the AMS7XXX specification.
Standard

Designing with Elastomers for use at Low Temperatures, Near or Below Glass Transition

2020-11-12
WIP
AIR1387E

To ensure success in design of elastomeric parts for use at low temperature, the design engineer must understand the peculiar properties of rubber materials at these temperatures.

There are no static applications of rubber. The Gaussian theory of rubber elasticity demonstrates that the elastic characteristic of rubber is due to approximately 15% internal energy and the balance, 85%, is entropy change. In other words, when an elastomer is deformed, the elastomer chain network is forced to rearrange its configuration thereby storing energy through entropy change. Thermodynamically, this means that rubber elasticity is time and temperature dependent (Reference 25).

The purpose of this report is to provide guidance on low temperature properties of rubber with the terminology, test methods, and mathematical models applicable to rubber, and to present some practical experience.

X