Refine Your Search

Topic

Search Results

Standard

Elastomer: Chloroprene Rubber (CR) Weather Resistant 55 - 65

2022-06-13
CURRENT
AMS3241K
This specification covers a chloroprene (CR) rubber that can be used to manufacture product in the form of sheet, strip, tubing, extrusions, and molded shapes such as window channels, bumper pads, chafing strips, etc. For molded rings, compression seals, molded O-ring cord, and molded-in-place gaskets for aeronautical and aerospace applications, use the equivalent AMS7XXX specification.
Standard

Elastomer: Chloroprene Rubber (CR) Weather Resistant 35 - 45

2022-06-13
CURRENT
AMS3240L
This specification covers a chloroprene rubber (CR) that can be used to manufacture product in the form of sheet, strip, tubing, extrusions, and molded shapes such as window channels, bumper pads, chafing strips, etc. For molded rings, compression seals, molded O-ring cord, and molded-in-place gaskets for aeronautical and aerospace applications, use the equivalent AMS7XXX specification.
Standard

Designing with Elastomers for use at Low Temperatures, Near or Below Glass Transition

2020-11-12
WIP
AIR1387E

To ensure success in design of elastomeric parts for use at low temperature, the design engineer must understand the peculiar properties of rubber materials at these temperatures.

There are no static applications of rubber. The Gaussian theory of rubber elasticity demonstrates that the elastic characteristic of rubber is due to approximately 15% internal energy and the balance, 85%, is entropy change. In other words, when an elastomer is deformed, the elastomer chain network is forced to rearrange its configuration thereby storing energy through entropy change. Thermodynamically, this means that rubber elasticity is time and temperature dependent (Reference 25).

The purpose of this report is to provide guidance on low temperature properties of rubber with the terminology, test methods, and mathematical models applicable to rubber, and to present some practical experience.

Standard

Patterns of O-Ring Failures

2019-11-19
CURRENT
AIR1707C
The information presented herein describes the commonly observed patterns of O-ring failure by means of both text and illustration. Possible causes and corrective actions are indicated for alleviating the problem.
Standard

Rubber: Flourocarbon (FKM), High Temperature/Fluid Resistant, Low Compression Set/ 85 to 95 Hardness, For Seals in Fuel Systems and Specific Engine Oil Systems

2018-10-09
WIP
AMS7259F
This specification covers a fluorocarbon (FKM) rubber in the form of O-rings, O-ring cord, compression seals, and molded-in-place gaskets for aeronautical and aerospace applications. These products have been used typically as sealing rings, compression seals, O-ring cord, and molded-in-place gaskets in contact with air and a wide variety of fuels, lubricants, and specific hydraulic fluids but usage is not limited to such applications. Each application should be considered individually. This class of fluoroelastomers is not recommended for use in high temperature stabilized, “HTS”, engine oils. Each “HTS” oil should be evaluated separately. This fluorocarbon rubber has a typical service temperature range of -20 to +400 °F (-29 to +204 °C) in air.
Standard

Designing with Elastomers for use at Low Temperatures, Near or Below Glass Transition

2016-01-15
CURRENT
AIR1387D
To ensure success in design of elastomeric parts for use at low temperature, the design engineer must understand the peculiar properties of rubber materials at these temperatures. There are no static applications of rubber. The Gaussian theory of rubber elasticity demonstrates that the elastic characteristic of rubber is due to approximately 15% internal energy and the balance, 85%, is entropy change. In other words, when an elastomer is deformed, the elastomer chain network is forced to rearrange its configuration thereby storing energy through entropy change. Thermodynamically, this means that rubber elasticity is time and temperature dependent (Reference 25). The purpose of this report is to provide guidance on low temperature properties of rubber with the terminology, test methods, and mathematical models applicable to rubber, and to present some practical experience.
X