Refine Your Search


Search Results

Viewing 1 to 17 of 17

Inline Optical Power Monitoring, Network End-to-End Data Link Evaluation System

This document establishes methods to obtain, store, and access data about the health of a fiber optic network using commercially available inline optical power monitoring sensors. This document is intended for: Managers Engineers Technicians Contracting officers Third party maintenance agencies Quality assurance

Fiber Optic Sensor Specification Guidelines for Aerospace Applications

ARP6366 defines a comprehensive and widely-accepted set of specification guidelines to be considered by those seeking to use or design fiber optic sensors for aerospace applications. Some of the most common applications for fiber optic sensing within aerospace include inertial guidance and navigation (gyros) and structural monitoring (temperature, strain, and vibration sensing). Common sensor infrastructure elements include: transmitting and receiving opto-electronics (e.g., sources and receivers); multiplexing and demultiplexing optics; optical cabling; and signal processing (both hardware and firmware/software).

Guidelines for Testing and Support of Aerospace, Fiber Optic, Inter-Connect Systems

ARP5061A provides guidelines for optical performance testing of short haul fiber optic inter-connection systems used in aerospace vehicles. The focus of this document is to introduce the proper testing tools and establish common pre- and post-installation test methods and troubleshooting methodologies.

Connectors, Fiber Optic, Advanced, Circular or Rectangular, Plug and Receptacle, Environment Resistant, Removable Termini/Contacts, General Specification For

This specification covers the performance requirements for a plug and receptacle. The connector inserts may contain multiple termini or multiple termini and electrical contacts. The connectors use removable termini, or removable termini and electrical contacts, and are capable of operating within a temperature range of −65 to +200 °C (see These connectors are supplied under AS9100 reliability assurance program.

Fiber Optic Cleaning

This document is intended for connectors typically found on aerospace platforms and ground support equipment. The document provides the reasons for proper fiber optic cleaning, an in-depth discussion of available cleaning methods, materials, packaging, safety, and environmental concerns. Applicable personnel include: Managers Designers Engineers Technicians Trainers/Instructors Third Party Maintenance Agencies Quality Personnel Purchasing Shipping/Receiving Production

General Requirements for WDM Backbone Networks

This document (AIR6005) provides the framework for the specifications of a WDM OBN within the SAE AS5659 WDM LAN Specification document family, in particular, the Transparent Optical Backbone Network Specification. This framework includes potential requirements, technical background, investigation and context to support the writing of SAE’s WDM LAN specifications documents. The SAE’s AS6005 WDM OBN document describes a transparent optical network which contains optical components and optical interfaces to perform optical transport, optical add/drop, optical amplification, optical routing, and optical switching functions. The conforming optical signal interfaces for the data plane of the WDM OBN are defined. The conforming signal interfaces for the control and management planes of this network are also defined. The control and management plane signals may be either electrical or optical.

Fiber Optic Wavelength Division Multiplexed (WDM) Singlemode Interconnect and Component Standards Mapping for Aerospace Platform Applications – Device Level Specification

The purpose of this document is to serve as a resource to aerospace designers who are planning to utilize Wavelength Division Multiplexed (WDM) interconnects and components. Many WDM commercial systems exist and they incorporate a number of existing, commercially supported, standards that define the critical parameters to guide the development of these systems. These standards ensure interoperability between the elements within these systems. The commercial industry is motivated to utilize these standards to minimize the amount of tailored development. However, since some of the aerospace parameters are not satisfied by the commercial devices, this document will also try to extend the commercial parameters to those that are necessary for aerospace systems. The document provides cross-references to existing or emerging optical component and subsystem standards.

A Guideline for Application of RF Photonics to Aerospace Platforms

This SAE Aerospace Information Report (AIR) is devoted to the challenges of applying optics to new advanced RF analog systems only; digital data link applications are covered elsewhere in protocol/architecture specific documents like Fibre Channel, ATM, Ethernet, Sonet, etc. This document has four main goals: 1 To completely cover today’s capabilities and limitations of fiber in meeting multiple types of advanced RF system requirements. 2 To discuss near term advancements being developed that will bring us closer to meeting all the capabilities of current copper coax systems. 3 To identify the benefits of fiber optics for RF systems 4 To identify challenges for future development.

Connectors, Fiber Optic, Advanced, Circular or Rectangular, Plug and Receptacle, Environment Resistant, Removable Termini, General Specification For

This specification covers the performance requirements for a plug and receptacle, multiple termini, fiber optic connector. Fiber optic connectors using removable termini, and are capable of operating within a temperature range of -65 to +200 °C (see These connectors are supplied under MIL-STD-790 reliability assurance program. Statistical process control (SPC) techniques are required in the manufacturing process to minimize variation in production of connectors supplied to the requirements of this specification.