Refine Your Search

Topic

Search Results

Standard

Performance Standards for Oblique Facing Passenger Seats in Transport Aircraft

2023-10-26
CURRENT
AS6316
This SAE Aerospace Standard (AS) documents a common understanding of terms, compliance issues, and occupant injury criteria to facilitate the design and certification of oblique facing passenger seat installations specific to Part 25 aircraft. The applicability of the criteria listed in this current release is limited to seats with an occupant facing direction greater than 18° and no greater than 45° relative to the aircraft longitudinal axis. Seats installed at angles greater than 30° relative to the aircraft longitudinal axis must have an energy absorbing rest or shoulder harness and must satisfy the criteria listed in Table 2. Later revisions are intended to provide criteria for other facing directions. Performance criteria for forward and aft facing seats are provided in AS8049 and for side facing seats in AS8049/1.
Standard

Performance Standards for Side-Facing Seats in Civil Rotorcraft, Transport Aircraft, and General Aviation Aircraft

2023-01-20
CURRENT
AS8049/1B
This SAE Aerospace Standard (AS) defines Minimum Performance Standards (MPS), qualification requirements, and minimum documentation requirements for side-facing seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a side-facing seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic test conditions set forth in Title 14, Code of Federal Regulations (CFR) Part 23, 25, 27, or 29. While this document addresses system performance, responsibility for the seating system is divided between the seat supplier and the installation applicant. The seat supplier’s responsibility consists of meeting all the seat system performance requirements and obtaining and supplying to the installation applicant all the data prescribed by this document.
Standard

Performance Standards for Passenger and Crew Seats in Advanced Air Mobility (AAM) Aircraft

2022-10-07
CURRENT
AS6849
This SAE Aerospace Standard (AS) defines qualification requirements, and minimum documentation requirements for forward and aft facing seats in Advanced Air Mobility aircraft. The goal is to achieve occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when the seat is subjected to statically applied ultimate loads and to dynamic test conditions. While this document addresses system performance, responsibility for the seating system is divided between the seat manufacturer and the installation applicant. The seat manufacturer’s responsibility consists of meeting all the seat system performance requirements. The installation applicant has the ultimate system responsibility in assuring that all requirements for safe seat installation have been met. This AS is dependent on AS8049D and cannot be used without it.
Standard

Aircraft Seat Design Guidance and Clarifications

2022-05-24
CURRENT
ARP5526F
This SAE Aerospace Recommended Practice (ARP) documents a common understanding of terms, compliance issues, and design criteria to facilitate certification of seat installations specific to Part 25 aircraft. This ARP provides general guidance for seats to be installed in Part 23 aircraft and Parts 27 and 29 rotorcraft and does not specify specific designs or design methods for such certification.
Standard

Methods for Determining the Effect of Liquid Disinfectants on Seats in Transport Aircraft

2022-03-02
CURRENT
ARP8463
This SAE Aerospace Recommended Practice (ARP) defines acceptable methods for determining the effect of disinfectants application to passenger and crew seating products in transport aircraft. This ARP selected a standard application process for all disinfectants in order to remove one variable from the investigation, which, at the time, was more concerned with the unknown effect of disinfectant chemicals on seat materials. The SAE Aircraft Seat Committee noted that most disinfectant manufacturers have their own application regimens to ensure the effectiveness of their product and that these differ from those defined in the ARP. Consequently, the standard application methodology defined in the ARP is not suitable for qualifying disinfectants, but is rather a standard method to compare the disinfectant’s behavior across a range of seat materials. Acceptance of individual disinfectants for specific application regimens is outside the scope of this ARP.
Standard

Method to Evaluate Passenger and Flight Attendant Seats for the Test Requirements of 14 CFR Part 25 Appendix F, Parts IV and V

2022-02-14
CURRENT
ARP6199B
This SAE Aerospace Recommended Practice (ARP) is only applicable to 14 CFR Part 25 transport airplane passenger and flight attendant seats. This document provides an approach for determining which parts on aircraft seats are required to meet the test requirements of 14 CFR Part 25 Appendix F, Parts IV and V. Additionally, it is recommended to use materials that meets the requirements of 14 CFR Part 25 Appendix F, Parts IV and V in applications where not required. Independent furniture installations related to seat installations are outside the scope of this document.
Standard

Gaining Approval for Seats with Integrated Electronics in Accordance with AC 21-49 Section 7.b

2021-10-06
CURRENT
ARP6448A
This SAE Aerospace Recommended Practice (ARP) provides a framework for establishing methods and stakeholder responsibilities to ensure that seats with integrated electronic components (e.g., actuation system, reading light, inflatable restraint, inflight entertainment equipment, etc.) meet the seat TSO minimum performance standard. These agreements will allow seat suppliers to build and ship TSO-approved seats with integrated electronic components. The document presents the roles and accountabilities of the electronics manufacturer (EM), the seat supplier, and the TC/ATC/STC applicant/holder in the context of AC 21-49 Section 7.b (“Type Certification Using TSO-Approved Seat with Electronic Components Defined in TSO Design”). This document applies to all FAA seat TSOs C39( ), C127( ), etc. The document defines the roles and responsibilities of each party involved in the procurement of electronics, their integration on a TSO-approved seat, and the seat’s installation on an aircraft.
Standard

Analytical Methods for Aircraft Seat Design and Evaluation

2021-03-30
CURRENT
ARP5765B
This SAE Aerospace Recommended Practice (ARP) defines a means of assessing the credibility of computer models of aircraft seating systems used to simulate dynamic impact conditions set forth in Title 14, Code of Federal Regulations (14 CFR) Parts 23.562, 25.562, 27.562, and 29.562. The ARP is applicable to lumped mass and detailed finite element seat models. This includes specifications and performance criteria for aviation specific virtual anthropomorphic test devices (v-ATDs). This document provides a recommended methodology to evaluate the degree of correlation between a seat model and dynamic impact tests. This ARP also provides best practices for testing and modeling designed to support the implementation of analytical models of aircraft seat systems.
Standard

Performance Standard for Seat Furnishings in Transport Aircraft

2021-03-22
CURRENT
AS6960
Seat furnishings are installed around seats and are intended to enhance passenger privacy and comfort. They may have provisions for additional occupants to be seated when the aircraft is in-flight, but would not be occupied during taxi, take-off, and landing (TTL). This Aerospace Standard (AS) establishes the minimum design, performance and qualification requirements for seat furnishings with and without upper attachments (see Figures 1 and 2) to be installed in large transport category airplanes. This standard excludes seat furnishing designs that are directly attached to the seat assembly, for which AS8049 is the applicable standard. Integrated items (desk tops, cabinets, shelves, stowage areas, closeouts, dividers, etc.) connected to seat furnishings shall comply with the requirements of this AS as part of the seat furnishings.
Standard

Performance Standard for Seats in Civil Rotorcraft, Transport Aircraft, and General Aviation Aircraft

2021-01-05
WIP
AS8049E
This SAE Aerospace Standard (AS) defines minimum performance standards, qualification requirements, and minimum documentation requirements for passenger and crew seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic impact test conditions set forth in Title 14, Code of Federal Regulations (14 CFR) parts 23, 25, 27, or 29 (as applicable to the seat type, see Table 1). Guidance for test procedures, measurements, equipment, and interpretation of results is also presented to promote uniform techniques and to achieve acceptable data. While this document addresses system performance, responsibility for the seating system is divided between the seat supplier and the installation applicant.
Standard

Design, Manufacturing, and Performance Standard for Composite Materials Used on Aircraft Seat Structures

2020-11-18
CURRENT
ARP6337
This SAE Aerospace Recommended Practice (ARP) defines additional documentation, environmental considerations, in-service damage limits, test and evaluation criteria necessary to support certification of aircraft seats manufactured using composite materials, in addition to requirements in AS8049 and ARP5526. This document is limited to aircraft seat composite parts in the seat primary load path from the occupant to the attachments of the seat to the aircraft. The term “composite” is inclusive of any fiber-reinforced polymer matrix materials such as carbon fiber-reinforced plastics, sandwich panels and bonded structure.
Standard

Performance Standard for Seats in Civil Rotorcraft, Transport Aircraft, and General Aviation Aircraft

2020-11-02
CURRENT
AS8049D
This SAE Aerospace Standard (AS) defines minimum performance standards, qualification requirements, and minimum documentation requirements for passenger and crew seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic impact test conditions set forth in Title 14, Code of Federal Regulations (14 CFR) parts 23, 25, 27, or 29 (as applicable to the seat type, see Table 1). Guidance for test procedures, measurements, equipment, and interpretation of results is also presented to promote uniform techniques and to achieve acceptable data. While this document addresses system performance, responsibility for the seating system is divided between the seat supplier and the installation applicant.
Standard

Magnesium Alloys in Aircraft Seats - Developments in Magnesium Alloy Flammability Testing

2020-01-09
CURRENT
AIR6160A
This document provides informational background, rationale and a technical case to allow consideration of the removal of the magnesium alloy restriction in aircraft seat construction as contained in AS8049B. The foundation of this argument is flammability characterization work performed by the FAA at the William J. Hughes Technical Center (FAATC), Fire Safety Branch in Atlantic City, New Jersey, USA. The rationale and detailed testing results are presented along with flammability reports that have concluded that the use of specific types of magnesium alloys in aircraft seat construction does not increase the hazard level potential in the passenger cabin in a post-crash fire scenario. Further, the FAA has developed a lab scale test method, reference DOT/FAA/TC-13/52, to be used as a certification test, or method of compliance (MOC) to allow acceptability of the use of magnesium in the governing TSO-C127 and TSO-C39C.
Standard

Performance Standard for Child Restraint Systems in Transport Category Airplanes

2019-10-31
CURRENT
AS5276/1
This SAE Aerospace Standard (AS) defines minimum performance standards and related qualification criteria for add-on child restraint systems (CRS) which provide protection for small children in passenger seats of transport category airplanes. The AS is not intended to provide design criteria that could be met only by an aircraft-specific CRS. The goal of this standard is to achieve child-occupant protection by specifying a dynamic test method and evaluation criteria for the performance of CRS under emergency landing conditions.
Standard

Aircraft Seat Design Guidance and Clarifications

2018-08-23
HISTORICAL
ARP5526E
This SAE Aerospace Recommended Practice (ARP) documents a common understanding of terms, compliance issues, and design criteria to facilitate certification of seat installations specific to Part 25 aircraft. This ARP provides general guidance for seats to be installed in Part 23 aircraft and Parts 27 and 29 rotorcraft and does not specify specific designs or design methods for such certification.
Standard

Method to Evaluate Aircraft Passenger Seats for the Test Requirements of 14 CFR Part 25 Appendix F, Parts IV and V

2017-02-02
HISTORICAL
ARP6199A
This SAE Aerospace Recommended Practice (ARP) is only applicable to 14 CFR part 25 Transport Airplane passenger seats. This document provides an approach for determining which parts on aircraft seats are required to meet the test requirements of 14 CFR part 25 Appendix F, Parts IV and V. Such materials are referred to as Heat Release Special Conditions (HRSC) compliant]. Additionally, it is recommended to use HRSC compliant materials in applications where not required. Independent furniture related to seat installations is outside the scope of this document.
Standard

Performance Standards for Oblique Facing Passenger Seats in Transport Aircraft

2016-05-13
HISTORICAL
ARP6316
This SAE Aerospace Recommended Practice (ARP) documents a common understanding of terms, compliance issues, and occupant injury criteria to facilitate the design and certification of oblique facing passenger seat installations specific to Part 25 aircraft. The applicability of the criteria listed in this current release is limited to seats with an occupant facing direction greater than 18 and no greater than 30 degrees relative to the aircraft longitudinal axis. Later revisions are intended to provide criteria for other facing directions. Performance criteria for side facing seats installed with the occupant facing direction at 90 degrees relative to the aircraft longitudinal axis are provided in AS8049/1. Seats installed at angles greater than 30 degrees relative to the aircraft longitudinal axis must have an energy absorbing rest or shoulder harness. However, this document does not provide the criteria for oblique facing seats incorporating such rests.
Standard

Performance Standards for Side-Facing Seats in Civil Rotorcraft, Transport Aircraft, and General Aviation Aircraft

2016-03-05
HISTORICAL
AS8049/1A
This SAE Aerospace Standard (AS) defines Minimum Performance Standards (MPS), qualification requirements, and minimum documentation requirements for side-facing seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a side-facing seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic test conditions set forth in Title 14, Code of Federal Regulations (CFR) Part 23, 25, 27, or 29. While this document addresses system performance, responsibility for the seating system is divided between the seat supplier and the installation applicant. The seat supplier’s responsibility consists of meeting all the seat system performance requirements and obtaining and supplying to the installation applicant all the data prescribed by this document.
Standard

Analytical Methods for Aircraft Seat Design and Evaluation

2015-12-04
HISTORICAL
ARP5765A
This SAE Aerospace Recommended Practice (ARP) defines a means of assessing the credibility of computer models of aircraft seating systems used to simulate dynamic impact conditions set forth in Federal Regulations §14 CFR Part 23.562, 25.562, 27.562, and 29.562. The ARP is applicable to lumped mass and detailed finite element seat models. This includes specifications and performance criteria for aviation specific virtual anthropomorphic test devices (v-ATDs). A methodology to evaluate the degree of correlation between a seat model and dynamic impact tests is recommended. This ARP also provides testing and modeling best practices specific to support the implementation of analytical models of aircraft seat systems. Supporting information within this document includes procedures for the quantitative comparison of test and simulation results, as well as test reports for data generated to support the development of v-ATDs and a sample v-ATD calibration report.
X