Refine Your Search

Topic

Search Results

Standard

TRAFFIC COMPUTER, ACAS-X, AND ADS-B FUNCTIONALITY

2022-11-02
CURRENT
ARINC735C
This document describes Airborne Collision Avoidance System X (ACAS X) functionality and provides the necessary interface definitions and protocols to accommodate the requirements of RTCA DO-385: Minimum Operational Performance Standards for Airborne Collision Avoidance System X (ACAS X) ACAS Xa and ACAS Xo) (latest version applies) and the requirements of RTCA DO-386: Minimum Operational Performance Standards for Airborne Collision Avoidance System X (ACAS X) ACAS Xu (latest version applies). Additionally, this document describes interfaces and protocols necessary to accommodate Cockpit Display of Traffic Information (CDTI) based on the reception of Automatic Dependent Surveillance-Broadcast (ADS-B) data and Traffic Information Services–Broadcast (TIS-B) data. The equipment becomes ACAS X with ADS-B IN applications added, as defined by RTCA DO-317C: Minimum Operational Performance Standards for (MOPS) for Aircraft Surveillance Applications (ASA) Systems (latest version applies).
Standard

GUIDANCE FOR THE MANAGEMENT OF FIELD LOADABLE SOFTWARE

2022-11-01
CURRENT
ARINC667-3
This document describes effective methods to manage and distribute operation flight software programs, aeronautical data bases and other forms of software used within an airline organization. Topics include software acquisition, software receiving, software distribution and necessary documentation. The FLS management process described in ARINC 667 is compatible with published FAA/EASA guidance on this subject. Software suppliers, airline users and regulators will find this document to be a practical and effective guide.
Standard

MARK 4 AIR TRAFFIC CONTROL TRANSPONDER (ATCRBS/MODE S)

2022-10-07
CURRENT
ARINC718A-5
Mark 4 Air Traffic Control Transponder (ATCRBS/MODE S) describes an Air Traffic Control Radar Beacon System/Mode Select (ATCRBS/Mode S) airborne transponder with Extended Interface Functions (EIF). The ATC surveillance system is made up of airborne transponders and ground interrogator-receivers, processing equipment, and antenna systems. Mode S is a cooperative surveillance system for air traffic control with ancillary communications capabilities. ARINC 718A supports elementary surveillance. Provisional enhanced surveillance functionality is also defined as a customer option. The Mark 4 transponder, like its predecessor, will support Collision Avoidance System which includes TCAS and ACAS X functions.
Standard

NAVIGATION SYSTEM DATABASE

2022-07-08
CURRENT
ARINC424-23
This standard provides a data base comprising standards used for the preparation of a navigation system data base. This data may be used with the operational flight software in a wide range of navigational equipment.
Standard

GUIDANCE FOR USAGE OF DIGITAL CERTIFICATES

2022-07-01
CURRENT
ARINC842-3
The purpose of this document is to provide operational guidance for key life-cycle management, which refers to the phases through which digital certificates and associated cryptographic keys progress, from creation through usage to retirement. Additionally, this document provides implementation guidance for online certificate provisioning of aircraft systems. The scope includes both the onboard part (aircraft system) as well as the ground part (PKI provider and Ground Infrastructure). Consideration of both onboard and ground provides the benefit of security considerations being included in the process flow and chain of custody. Specifically, the management to and from the aircraft is defined within a workflow.
Standard

AOC AIR-GROUND DATA AND MESSAGE EXCHANGE FORMAT

2021-11-30
CURRENT
ARINC633-4
The purpose of ARNC 633 is to specify the format and exchange of Aeronautical Operational Control (AOC) communications. Examples of ARINC 633 AOC Structures/Messages include: Flight Plan, Load Planning (i.e., Weight and Balance and Cargo Planning Load Sheets), NOTAMs, Airport and Route Weather data, Minimum Equipment Lists (MEL) messages, etc. The standardization of AOC messages enable the development of applications shared by numerous airlines on different aircraft types. Benefits include improved dispatchability and reduce operator cost.
Standard

AVIONICS APPLICATION SOFTWARE STANDARD INTERFACE PART 3A CONFORMITY TEST SPECIFICATIONS FOR ARINC 653 REQUIRED SERVICES

2021-11-15
CURRENT
ARINC653P3A-2
ARINC 653, Part 3A is the Compliance Test Specification for ARINC 653 Required Services presently defined in ARINC 653 Part 1. The document specifies a set of stimuli and the expected responses. Future work on the ARINC 653 document set includes an effort to define Operating System services for multi-core processor environments. The Compliance Test Specification is expected to be updated in step with ARINC 653, Part 1.
Standard

AVIONICS APPLICATION SOFTWARE STANDARD INTERFACE PART 0 OVERVIEW OF ARINC 653

2021-11-15
CURRENT
ARINC653P0-3
This document provides an overview of the entire set of documents collectively referred to as ARINC 653. As this set of documents evolves, Part 0 has been adjusted to reflect technical changes made in Supplements to Parts 1 through 5 in conjunction with the technical changes made in the evolution of ARINC 653. A summary of the ARINC 653 documents follows: Part 0 – Overview of ARINC 653 Part 1 – Required Services Part 2 – Extended Services Part 3A – Conformity Test Specification for ARINC 653 Required Services Part 3B – Conformity Test Specification for ARINC 653 Extended Services Part 4 – Subset Services Part 5 – Core Software Recommended Capabilities The term “this document” refers to Part 0 only, while the term “ARINC 653” or “the Specification” refers to the whole set of ARINC 653 documents, currently Parts 0 to 5.
Standard

AIRCRAFT SERVER, COMMUNICATIONS, AND INTERFACE STANDARD

2021-11-10
CURRENT
ARINC679
ARINC Report 679 defines the functional characteristics of an airborne server that will support Electronic Flight Bags (EFBs) and similar peripherals used in the flight deck, cabin, and maintenance applications. The document defines how EFBs will efficiently, effectively, safely, and securely connect to the airborne server in a way that offer expanded capabilities to aircraft operators. The airborne server has two main functions, first to provide specific services to connected systems, and second to provide centralized security for the EFB and its data. This document is a functional airborne server definition. It does not define the physical characteristics of the server.
Standard

STANDARD DATA INTERFACE FOR GALLEY INSERT (GAIN) EQUIPMENT PART 1 CAN COMMUNICATIONS

2021-09-10
CURRENT
ARINC812AP1-2
The purpose of this specification is to define the general Galley Insert (GAIN)standardization philosophy, provide comprehensive equipment interfaces, and disseminate the most current industry guidance. Part 1 covers the Controller Area Network (CAN) data interface attachments, envelopes, and data content to be considered between all galley equipment using a Galley Data Bus as described within this specification. This document is intended as the successor and replacement for ARINC Specification 812. This document contains significant improvements to CAN data interfaces.
Standard

COMMON TERMINOLOGY AND FUNCTIONS FOR SOFTWARE DISTRIBUTION AND LOADING

2021-08-11
CURRENT
ARINC645-1
This document provides airlines, airframe manufacturers, aircraft equipment suppliers, and others with information that is specific to data, software, and ground tools used in aviation configuration and data management. As a starting point, this document provides guidance on: Which standard to use in specific situations The use of and how integrity checks should be applied Common terminology in airborne software management Since airplanes started using software controlled hardware, there has been a need to standardize processes and terminology. This document is the centroid to which other software standards are related.
Standard

TIMELY RECOVERY OF FLIGHT DATA (TRFD)

2021-08-06
CURRENT
ARINC681
The difficulty in locating crash sites has prompted international efforts for alternatives to quickly recover flight data. This document describes the technical requirements and architectural options for the Timely Recovery of Flight Data (TRFD) in commercial aircraft. ICAO and individual Civil Aviation Authorities (CAAs) levy these requirements. The ICAO Standards and Recommended Practices (SARPs) and CAA regulations cover both aircraft-level and on-ground systems. This report also documents additional system-level requirements derived from the evaluation of ICAO, CAA, and relevant industry documents and potential TRFD system architectures. It describes two TRFD architectures in the context of a common architectural framework and identifies requirements. This report also discusses implementation recommendations from an airplane-level perspective.
Standard

GUIDANCE FOR DISTRIBUTED RADIO ARCHITECTURES

2021-07-15
CURRENT
ARINC678
The purpose of this document is to evaluate Communication, Navigation, and Surveillance (CNS) Distributed Radio architectures and the feasibility of distributing the RF and systems processing sections to ensure the following: Reduce cost of equipment Reduce Size, Weight, and Power (SWaP) Ease of aircraft integration Growth capability built into the design Maintain or improve system availability, reliability, and maintainability It provides a framework to determine whether it is feasible to develop ARINC Standards that support CNS distributed radio architectures.
Standard

INTERSYSTEM NETWORK INTEGRATION

2021-06-24
CURRENT
ARINC688
The purpose of this document is to provide guidelines for integrating previously standalone cabin systems such as cabin management systems, In-Flight Entertainment (IFE) systems, In-Flight Connectivity (IFC) systems, galley systems, surveillance systems, etc. Resource sharing between systems can reduce airline costs and/or increase functionality. But, as systems expose their internal resources to external systems, the risk of an intrusion that could degrade function and/or negatively expose the supplier’s or airline’s brand increases. This document provides a recommended IP networking design framework between aircraft systems to reduce the operational security threats while still supporting the necessary intersystem routing.
Standard

INTERNET PROTOCOL SUITE (IPS) FOR AERONAUTICAL SAFETY SERVICES PART 2 IPS GATEWAY AIR-GROUND INTEROPERABILITY

2021-06-21
CURRENT
ARINC858P2
ARINC 858 Part 2 provides aviation ground system gateway considerations necessary to transition to the Internet Protocol Suite (IPS). ARINC 858 Part 2 describes the principles of operation for an IPS gateway that enables ACARS application messages to be exchanged between an IPS aircraft and a ground ACARS host. ARINC 858 Part 2 also describes the principles of operation for an IPS gateway that enables OSI-based application messages to be exchanged between an IPS host and an OSI end system. This product was developed in coordination with ICAO WG-I, RTCA SC-223, and EUROCAE WG-108.
Standard

INTERNET PROTOCOL SUITE (IPS) FOR AERONAUTICAL SAFETY SERVICES PART 1 AIRBORNE IPS SYSTEM TECHNICAL REQUIREMENTS

2021-06-21
CURRENT
ARINC858P1
ARINC 858 Part 1 defines the airborne data communication network infrastructure for aviation safety services using the Internet Protocol Suite (IPS). ARINC 858 builds upon ICAO Doc 9896, Manual on the Aeronautical Telecommunication Network (ATN) using Internet Protocol Suite (IPS) Standards and Protocol. IPS will extend the useful life of data comm services presently used by operators, e.g., VDL, Inmarsat SBB, Iridium NEXT, and others. It represents the evolutionary path from ACARS and ATN/OSI to the end state: ATN/IPS. ARINC 858 includes advanced capabilities such as aviation security and mobility. This product was developed in coordination with ICAO WG-I, RTCA SC-223, and EUROCAE WG-108.
Standard

ONBOARD SECURE WI-FI NETWORK PROFILE STANDARD

2021-06-18
CURRENT
ARINC687
This document defines a standard implementation for strong client authentication and encryption of Wi-Fi-based client connections to onboard Wireless LAN (WLAN) networks. WLAN networks may consist of multi-purpose inflight entertainment system networks operating in the Passenger Information and Entertainment System (PIES) domain, dedicated aircraft cabin wireless networks or localized Aircraft Integrated Data (AID) devices operating in the Aircraft Information Services (AIS) domain. The purpose of this document is to focus on the client devices requiring connections to these networks such as electronic flight bags, flight attendant mobile devices, onboard Internet of Things (IoT) devices, AID devices (acting as clients) and mobile maintenance devices. Passenger devices are not within the focus of this document.
Standard

LOGICAL SOFTWARE PART PACKAGING FOR TRANSPORT

2020-11-16
CURRENT
ARINC641-1
The purpose of this standard is to provide a method for packaging aircraft software parts for distribution using contemporary media or by electronic distribution. This project intends to standardize and provide guidance for the storage of floppy based software, currently packaged in media set parts. This standard format can be then stored or distributed on a single physical media member (CD-ROM), or by electronic crate. The obsolescence of floppy disks drive an urgent need for this guidance.
X