Refine Your Search

Topic

Search Results

Standard

AIRCRAFT SERVER, COMMUNICATIONS, AND INTERFACE STANDARD

2021-11-10
CURRENT
ARINC679
ARINC Report 679 defines the functional characteristics of an airborne server that will support Electronic Flight Bags (EFBs) and similar peripherals used in the flight deck, cabin, and maintenance applications. The document defines how EFBs will efficiently, effectively, safely, and securely connect to the airborne server in a way that offer expanded capabilities to aircraft operators. The airborne server has two main functions, first to provide specific services to connected systems, and second to provide centralized security for the EFB and its data. This document is a functional airborne server definition. It does not define the physical characteristics of the server.
Standard

TIMELY RECOVERY OF FLIGHT DATA (TRFD)

2021-08-06
CURRENT
ARINC681
The difficulty in locating crash sites has prompted international efforts for alternatives to quickly recover flight data. This document describes the technical requirements and architectural options for the Timely Recovery of Flight Data (TRFD) in commercial aircraft. ICAO and individual Civil Aviation Authorities (CAAs) levy these requirements. The ICAO Standards and Recommended Practices (SARPs) and CAA regulations cover both aircraft-level and on-ground systems. This report also documents additional system-level requirements derived from the evaluation of ICAO, CAA, and relevant industry documents and potential TRFD system architectures. It describes two TRFD architectures in the context of a common architectural framework and identifies requirements. This report also discusses implementation recommendations from an airplane-level perspective.
Standard

INTERSYSTEM NETWORK INTEGRATION

2021-06-24
CURRENT
ARINC688
The purpose of this document is to provide guidelines for integrating previously standalone cabin systems such as cabin management systems, In-Flight Entertainment (IFE) systems, In-Flight Connectivity (IFC) systems, galley systems, surveillance systems, etc. Resource sharing between systems can reduce airline costs and/or increase functionality. But, as systems expose their internal resources to external systems, the risk of an intrusion that could degrade function and/or negatively expose the supplier’s or airline’s brand increases. This document provides a recommended IP networking design framework between aircraft systems to reduce the operational security threats while still supporting the necessary intersystem routing.
Standard

AIRCRAFT DATA INTERFACE FUNCTION (ADIF)

2020-07-21
CURRENT
ARINC834-8
This document defines an Aircraft Data Interface Function (ADIF) developed for aircraft installations that incorporate network components based on commercially available technologies. This document defines a set of protocols and services for the exchange of aircraft avionics data across aircraft networks. A common set of services that may be used to access specific avionics parameters are described. The ADIF may be implemented as a generic network service, or it may be implemented as a dedicated service within an ARINC 759 Aircraft Interface Devices (AID) such as those used with an Electronic Flight Bag (EFB). Supplement 8 includes improvements in the Aviation Data Broadcast Protocol (ADBP), adds support for the Media Independent Aircraft Messaging (MIAM) protocol, and contains data security enhancements. It also includes notification and deprecation of the Generic Aircraft Parameter Service (GAPS) protocol that will be deleted in a future supplement.
Standard

AVIATION SATELLITE COMMUNICATION SYSTEMS PART 1 AIRCRAFT INSTALLATION PROVISIONS

2019-12-23
CURRENT
ARINC741P1-15
This ARINC Standard defines the installation characteristics of first generation L-band satellite communication systems. It provides the traditional form, fit, function, and interfaces for the installation of satcom equipment for use in all types of aircraft. Description of avionics equipment (e.g., Satellite Data Unit (SDU), Antennas, etc.) are included. Supplement 15 adds references to new Diplexer/Low Noise Amplifiers (DLNAs) defined in Supplement 8 to ARINC Characteristic 781: Mark 3 Aviation Satellite Communication Systems. The five new DLNAs are intended to protect Inmarsat Classic Aero and SwiftBroadband (SBB) satcom equipment from ground-based cellular sources, such as cellular Long Term Evolution (LTE) and Ancillary Terrestrial Component (ATCt). The DLNAs are categorized by desired features and service (e.g., new DLNA versus drop-in replacement, LTE and/or ATCt protection, Classic Aero and/or SBB service).
Standard

SECOND GENERATION AVIATION SATELLITE COMMUNICATION SYSTEMS, AIRCRAFT INSTALLATION PROVISIONS

2019-12-23
CURRENT
ARINC761-6
This ARINC Standard defines the installation characteristics of second generation L-band satellite communication systems. It provides the traditional form, fit, function, and interfaces for the installation of satcom equipment for use in all types of aircraft. Description of avionics equipment (e.g., Satellite Data Unit (SDU), Antennas, etc.) are included. Supplement 6 adds references to new Diplexer/Low Noise Amplifiers (DLNAs) defined in Supplement 8 to ARINC Characteristic 781: Mark 3 Aviation Satellite Communication Systems. The five new DLNAs are intended to protect Inmarsat Classic Aero and SwiftBroadband (SBB) satcom equipment from ground-based cellular sources, such as cellular Long Term Evolution (LTE) and Ancillary Terrestrial Component (ATCt). The DLNAs are categorized by desired features and service (e.g., new DLNA versus drop-in replacement, LTE and/or ATCt protection, Classic Aero and/or SBB service).
Standard

COMMUNICATIONS MANAGEMENT UNIT (CMU) MARK 2

2019-11-26
CURRENT
ARINC758-4
This ARINC Standard specifies the ARINC 758 Mark 2 Communications Management Unit (CMU) as an on-board message router capable of managing various datalink networks and services available to the aircraft. Supplement 4 adds Ethernet interfaces, per ARINC Specification 664 Part 2. This will allow the CMU to communicate with IP based radio transceivers (e.g., L-Band Satellite Communication Systems (Inmarsat SwiftBroadband (SBB) and Iridium Certus), ACARS over IP, AeroMACS, etc.).
Standard

MARK I AVIATION KU-BAND AND KA-BAND SATELLITE COMMUNICATION SYSTEM PART 1 PHYSICAL INSTALLATION AND AIRCRAFT INTERFACES

2019-09-19
CURRENT
ARINC791P1-3
This standard sets forth the desired characteristics of Aviation Ku-band Satellite Communication (Satcom) and Ka-band Satcom Systems intended for installation in all types of commercial air transport aircraft. The intent of this characteristic is to provide guidance on the interfaces, form, fit, and function of the systems. This document also describes the desired operational capability of the equipment needed to provide a broadband transport link that can be used for data, video, and voice communications typically used for passenger communications and/or entertainment. The systems described in this characteristic are not qualified, at this writing, for aviation safety functions.
Standard

MARK 3 AVIATION SATELLITE COMMUNICATION SYSTEMS

2019-09-10
CURRENT
ARINC781-8
This document sets forth the desired characteristics of an aviation satellite communication (satcom) system intended for installation in all types of commercial transport and business aircraft. The intent of this document is to provide general and specific guidance on the form factor and pin assignments for the installation of the avionics primarily for airline use. It also describes the desired operational capability of the equipment to provide data and voice communications, as well as additional standards necessary to ensure interchangeability. This Characteristic specifies equipment using Inmarsat satellites operating in L-band. Ku-band and Ka-band equipment is specified in ARINC Characteristic 791. Supplement 8 adds new Diplexer Low Noise Amplifiers (DLNA) to protect Inmarsat’s Classic Aero and SwiftBroadband (SBB) satcom equipment from possible ground-based LTE and ATCt (Ligado) interference.
Standard

AIRCRAFT AUTONOMOUS DISTRESS TRACKING (ADT)

2019-08-26
CURRENT
ARINC680
This document describes the technical requirements, architectural options, and recommended interface standards to support an Autonomous Distress Tracking (ADT) System intended to meet global regulatory requirements for locating aircraft in distress situations and after an accident. This document is prepared in response to International Civil Aviation Organization (ICAO) and individual Civil Aviation Authorities (CAAs) initiatives.
Standard

AIRCRAFT SOFTWARE COMMON CONFIGURATION REPORTING

2019-08-13
CURRENT
ARINC843-1
This standard defines a common configuration report format that can be retrieved from an aircraft for use by ground tools and maintenance personnel. Reports will be generated in Extensible Markup Language (XML) format and structured as defined by this document. Several optional elements and attributes are defined to allow flexibility for a given report. This standard provides aircraft manufacturers, regulatory agencies, and airlines a format standard for aircraft configuration reporting, and facilitates automated comparison of configuration data reports (e.g., authorized versus as flying, etc.).
Standard

AIRCRAFT DATA NETWORK, PART 1, SYSTEMS CONCEPTS AND OVERVIEW

2019-06-20
CURRENT
ARINC664P1-2
The purpose of this document is to provide an overview of data networking standards recommended for use in commercial aircraft installations. These standards provide a means to adapt commercially defined networking standards to an aircraft environment. It refers to devices such as bridges, switches, routers and hubs and their use in an aircraft environment. This equipment, when installed in a network topology, can optimize data transfer and overall avionics performance.
Standard

LOW-EARTH ORBITING AVIATION SATELLITE COMMUNICATION SYSTEMS

2018-10-01
CURRENT
ARINC771-1
This document sets forth the desired characteristics of the Iridium Low-Earth Orbiting (LEO) Aviation Satellite Communication (Satcom) System avionics intended for installation in all types of aircraft including commercial transport, business, and general aviation aircraft. The intent of this document is to provide a description of the system components, aircraft interfaces, and satellite communication functions. It also describes the desired system performance and operational capability of the equipment.
Standard

FIBER OPTIC CABLES

2018-08-27
CURRENT
ARINC802-3
This specification covers the performance requirements, dimensions, quality assurance criteria, test procedures, and cable codification for fiber optic cables suitable for use on commercial aircraft.
Standard

FIBER OPTIC FERRULE MECHANICAL TRANSFER

2018-08-06
CURRENT
ARINC846
This specification covers the dimensions, performance, and quality assurance criteria for fiber optic MT contacts, including performance test requirements and procedures, suitable for use on commercial aircraft.
Standard

MARK 3 AVIATION SATELLITE COMMUNICATION SYSTEMS

2017-08-09
CURRENT
ARINC781-7
This document sets forth the desired characteristics of an aviation satellite communication (Satcom) system intended for installation in all types of commercial transport and business aircraft. The intent of this document is to provide general and specific guidance on the form factor and pin assignments for the installation of the avionics primarily for airline use. It also describes the desired operational capability of the equipment to provide data and voice communications, as well as additional standards necessary to ensure interchangeability. This Characteristic specifies equipment using Inmarsat satellites operating in L-band. Ku-band and Ka-band equipment is specified in ARINC Characteristic 791.
Standard

AIRCRAFT DATA INTERFACE FUNCTION (ADIF)

2017-08-09
CURRENT
ARINC834-7
This document defines an Aircraft Data Interface Function (ADIF) developed for aircraft installations that incorporate network components that are based on commercially available technologies. This document defines a set of protocols and services for the exchange of aircraft avionics data across aircraft networks. The goal is to provide a common set of services that may be used to access specific avionics parameters. The ADIF may be implemented as a generic network service, or it may be implemented as a dedicated service within an ARINC 759 Aircraft Interface Devices (AID) such as those used with an Electronic Flight Bag (EFB).
X