Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

A 3D Simulation Methodology for Predicting the Effects of Blasts on a Vehicle Body

2019-04-02
2019-01-1033
Triggered explosions are increasingly becoming common in the world today leading to the loss of precious lives under the most unexpected circumstances. In most scenarios, ordinary citizens are the targets of such attacks, making it essential to design countermeasures in open areas as well as in mobility systems to minimize the destructive effects of such explosive-induced blasts. It would be rather difficult and to an extent risky to carry out physical experiments mimicking blasts in real world scenarios. In terms of mechanics, the problem is essentially one of fluid-structure interaction in which pressure waves in the surrounding air are generated by detonating an explosive charge which then have the potential to cause severe damage to any obstacle on the path of these high-energy waves.
Technical Paper

Prediction of the Behaviors of Adhesively Bonded Steel Hat Section Components under Axial Impact Loading

2017-03-28
2017-01-1461
Adhesively bonded steel hat section components have been experimentally studied in the past as a potential alternative to traditional hat section components with spot-welded flanges. One of the concerns with such components has been their performance under axial impact loading as adhesive is far more brittle as compared to a spot weld. However, recent drop-weight impact tests have shown that the energy absorption capabilities of adhesively bonded steel hat sections are competitive with respect to geometrically similar spot-welded specimens. Although flange separation may take place in the case of a specimen employing a rubber toughened epoxy adhesive, the failure would have taken place post progressive buckling and absorption of impact energy.
Journal Article

A Comparison of the Behaviors of Steel and GFRP Hat-Section Components under Axial Quasi-Static and Impact Loading

2015-04-14
2015-01-1482
Hat-sections, single and double, made of steel are frequently encountered in automotive body structural components. These components play a significant role in terms of impact energy absorption during vehicle crashes thereby protecting occupants of vehicles from severe injury. However, with the need for higher fuel economy and for compliance to stringent emission norms, auto manufacturers are looking for means to continually reduce vehicle body weight either by employing lighter materials like aluminum and fiber-reinforced plastics, or by using higher strength steel with reduced gages, or by combinations of these approaches. Unlike steel hat-sections which have been extensively reported in published literature, the axial crushing behavior of hat-sections made of fiber-reinforced composites may not have been adequately probed.
Technical Paper

A Unified CAE Framework for Assessing an IC Engine Design

2015-04-14
2015-01-1664
Despite the considerable advancements made in the applications of CAE for evaluation of an IC engine, an integrated approach to the design of such engines based on thermo-mechanical considerations appears to be lacking. The usage of heterogeneous tools for thermal, mechanical and vibration analysis in the industry decreases the efficiency of the product development process. In an effort to reduce this bottleneck, a unified framework is presented here according to which heat transfer and thermo-mechanical stress analysis of a four-stroke single cylinder diesel engine is carried out in a unified manner with the aid of a multi-physics explicit finite element analysis tool, LS-DYNA, with robust contact interfaces leading to a realistic representation of engine dynamics.
Journal Article

Numerical Prediction of Dynamic Progressive Buckling Behaviors of Single-Hat and Double-Hat Steel Components under Axial Loading

2013-04-08
2013-01-0458
Hat sections, single and double, made of steel are frequently encountered in automotive body structural components such as front rails, B-Pillar, and rockers of unitized-body cars. These components can play a significant role in terms of impact energy absorption during collisions thereby protecting occupants of vehicles from severe injury. Modern vehicle safety design relies heavily on computer-aided engineering particularly in the form of explicit finite element analysis tools such as LS-DYNA for virtual assessment of crash performance of a vehicle body structure. There is a great need for the analysis-based predictions to yield close correlation with test results which in turn requires well-proven modeling procedures for nonlinear material modeling with strain rate dependence, effective representation of spot welds, sufficiently refined finite element mesh, etc.
Technical Paper

A Comparative Study on the Axial Impact Performance of Jute and Glass Fiber-Based Composite Tubes

2013-04-08
2013-01-1178
This paper focuses on the energy absorbing characteristics and progressive deformation behavior of woven jute-polyester composite cylindrical tubes subjected to an axial impact load. In this study, the impact energy absorption characteristics and crushing mechanisms of composite tubes of different thicknesses and number of plies are investigated. To start with, coupon specimens are made from laminates of jute and glass fiber-based polyester composites. These are then tested in a UTM for mechanical characterization of the composites under tensile and compressive loading conditions. Experiments are then conducted in a drop-weight impact testing device to investigate crash performance characteristics such as mean crush load, absorbed energy and specific energy absorption (SEA) of woven jute-polyester composite cylindrical tubes.
Technical Paper

Active Yaw Control of a Vehicle using a Fuzzy Logic Algorithm

2012-04-16
2012-01-0229
Yaw rate of a vehicle is highly influenced by the lateral forces generated at the tire contact patch to attain the desired lateral acceleration, and/or by external disturbances resulting from factors such as crosswinds, flat tire or, split-μ braking. The presence of the latter and the insufficiency of the former may lead to undesired yaw motion of a vehicle. This paper proposes a steer-by-wire system based on fuzzy logic as yaw-stability controller for a four-wheeled road vehicle with active front steering. The dynamics governing the yaw behavior of the vehicle has been modeled in MATLAB/Simulink. The fuzzy controller receives the yaw rate error of the vehicle and the steering signal given by the driver as inputs and generates an additional steering angle as output which provides the corrective yaw moment.
Technical Paper

An Efficient Hybrid Approach for Design of Automotive Wheel Bearings

2011-04-12
2011-01-0091
Wheel bearings play a crucial role in the mobility of a vehicle by minimizing motive power loss and providing stability in cornering maneuvers. Detailed engineering analysis of a wheel bearing subsystem under dynamic conditions poses enormous challenges due to the nonlinearity of the problem caused by multiple factional contacts between rotating and stationary parts and difficulties in prediction of dynamic loads that wheels are subject to. Commonly used design methodologies are based on equivalent static analysis of ball or roller bearings in which the latter elements may even be represented with springs. In the present study, an advanced hybrid approach is suggested for realistic dynamic analysis of wheel bearings by combining lumped parameter and finite element modeling techniques.
Technical Paper

Effectiveness of Countermeasures in Upper Interior Head Impact

1997-02-24
970391
Trim covers made of impact resistant polymers on vehicle interior sheet metal can contribute to reduction of HIC(d) (Head Injury Criterion, dummy) during headform impact. Air-gap between trim and interior sheet metal can also induce deceleration of striking headform before it forces trim to contact sheet metal surface. As evidenced from laboratory component testing, situations may arise where additional protective measures may need to be incorporated between trim and sheet metal in order to attain acceptable levels of HIC(d). Two such alternatives in the form of energy-absorbing foam, and trim with molded collapsible stiffeners are discussed in this paper. The effectiveness of these countermeasures is evaluated through nonlinear finite element analysis, and favorable comparison with laboratory results is reported.
X