Refine Your Search

Topic

Author

Search Results

Technical Paper

Influence of Intake Charge Temperature and EGR Rate on the Combustion and Emission Characteristics of Ammonia/Diesel Dual-Fuel Engine

2024-06-12
2024-37-0025
Ammonia has emerged as a promising carbon-free alternative fuel for internal combustion engines (ICE), particularly in large-bore engine applications. However, integrating ammonia into conventional engines presents challenges, prompting the exploration of innovative combustion strategies like dual-fuel combustion. Nitrous oxide (N2O) emissions have emerged as a significant obstacle to the widespread adoption of ammonia in ICE. Various studies suggest that combining exhaust gas recirculation (EGR) with adjustments in inlet temperature and diesel injection timing can effectively mitigate nitrogen oxides (NOx) emissions across diverse operating conditions in dual-fuel diesel engines.
Technical Paper

Toy Model: A Naïve ML Approach to Hydrogen Combustion Anomalies

2024-04-09
2024-01-2608
Predicting and preventing combustion anomalies leads to safe and efficient operation of the hydrogen internal combustion engine. This research presents the application of three machine learning (ML) models – K-Nearest Neighbors (KNN), Random Forest (RF) and Logistic Regression (LR) – for the prediction of combustion anomalies in a hydrogen internal combustion engine. A small experimental dataset was used to train the models and posterior experiments were used to evaluate their performance and predicting capabilities (both in operating points -speed and load- within the training dataset and operating points in other areas of the engine map). KNN and RF exhibit superior accuracy in classifying combustion anomalies in the training and testing data, particularly in minimizing false negatives, which could have detrimental effects on the engine.
Technical Paper

ɸ-Sensitivity Evaluation of n-Butanol and Iso-Butanol Blends with Surrogate Gasoline

2023-08-28
2023-24-0089
Using renewable fuels is a reliable approach for decarbonization of combustion engines. iso-Butanol and n-butanol are known as longer chain alcohols and have the potential of being used as gasoline substitute or a renewable fraction of gasoline. The combustion behavior of renewable fuels in modern combustion engines and advanced combustion concepts is not well understood yet. Low-temperature combustion (LTC) is a concept that is a basis for some of the low emissions-high efficiency combustion technologies. Fuel ɸ-sensitivity is known as a key factor to be considered for tailoring fuels for these engines. The Lund ɸ-sensitivity method is an empirical test method for evaluation of the ɸ-sensitivity of liquid fuels and evaluate fuel behavior in thermal. iso-Butanol and n-butanol are two alcohols which like other alcohol exhibit nonlinear behavior when blended with (surrogate) gasoline in terms of RON and MON.
Technical Paper

Sustainability of Future Shipping Fuels: Well-to-Wake Environmental and Techno-Economic Analysis of Ammonia and Methanol

2023-08-28
2023-24-0093
The transportation industry has been scrutinized for its contribution towards the global greenhouse gas emissions over the years. While the automotive sector has been regulated by strict emission legislation globally, the emissions from marine transportation have been largely neglected. However, during the past decade, the international maritime organization focused on ways to lower the emission intensity of the marine sector by introducing several legislations. This sets limits on the emissions of different oxides of carbon, nitrogen and sulphur, which are emitted in large amounts from heavy fuel oil (HFO) combustion (the primary fuel for the marine sector). A 40% and 70% reduction per transport work compared to the levels of 2008 is set as target for CO2 emission for 2030 and 2050, respectively. To meet these targets, commonly, methanol, as a low-carbon fuel, and ammonia, as a zero-carbon fuel, are considered.
Technical Paper

An Experimental Investigation of Directly Injected E85 Fuel in a Heavy-Duty Compression Ignition Engine

2022-08-30
2022-01-1050
A commercially available fuel, E85, a blend of ~85% ethanol and ~15% gasoline, can be a viable substitute for fossil fuels in internal combustion engines in order to achieve a reduction of the greenhouse gas (GHG) emissions. Ethanol is traditionally made of biomass, which makes it a part of the food-feed-fuel competition. New processes that reuse waste products from other industries have recently been developed, making ethanol a renewable and sustainable second-generation fuel. So far, work on E85 has focused on spark ignition (SI) concepts due to high octane rating of this fuel. There is very little research on its application in CI engines. Alcohols are known for low soot particle emissions, which gives them an advantage in the NOx-soot trade-off of the compression ignition (CI) concept.
Journal Article

Evaluation of the Effect of Low-Carbon Fuel Blends’ Properties in a Light-Duty CI Engine

2022-08-30
2022-01-1092
De-fossilization is an increasingly important trend in the energy sector. In the transport sector the de-fossilization efforts have been centered in promoting the electrification of vehicles, nonetheless other pathways, like the use of carbon neutral or carbon-offsetting fuels under current vehicle fleets, are also worth considering. Low-carbon fuels (LCF) can be synthetized from sources that can take advantage of the carbon already present in the atmosphere (either by technologies like direct carbon capture or biological processes like photosynthesis in biofuels) and use energy from renewable sources for the necessary industrial processes. Although, LCFs can be compared to fossil fuels as energy sources for internal combustion engines, their composition is not the same and their properties can modify the engine combustion and emissions.
Technical Paper

Numerical Optimization of the Piston Bowl Geometry and Investigation of the Key Geometric Parameters for the Dual-Mode Dual-Fuel (DMDF) Concept under a Wide Load Range

2022-03-29
2022-01-0782
Focusing on the dual-mode dual-fuel (DMDF) combustion concept, a combined optimization of the piston bowl geometry with the fuel injection strategy was conducted at low, mid, and high loads. By coupling the KIVA-3V code with the enhanced genetic algorithm (GA), a total of 14 parameters including the piston bowl geometric parameters and the injection parameters were optimized with the objective of meeting Euro VI regulations while improving the fuel efficiency. The optimal piston bowl shape coupled with the corresponding injection strategy was summarized and integrated at various loads. Furthermore, the effects of the key geometric parameters were investigated in terms of organizing the in-cylinder flow, influencing the energy distribution, and affecting the emissions. The results indicate that the behavior of the DMDF combustion mode is further enhanced in the aspects of improving the fuel economy and controlling the emissions after the bowl geometry optimization.
Technical Paper

Combining DMDF and Hybrid Powertrains: A Look on the Effects of Different Battery Modelling Approaches

2022-03-29
2022-01-0658
Fleet electrification has been demonstrated as a feasible solution to decarbonize the heavy-duty transportation sector. The combination of hybridization and advanced combustion concepts may provide further advantages by also introducing reductions on criteria pollutants such as nitrogen oxides and soot. In this scenario, the interplay among the different energy paths must be understood and quantified to extract the full potential of the powertrain. One of the key devices in such powertrains is the battery, which involves different aspects regarding operation, safety, and degradation. Despite this complexity, most of the models still rely on resistance-capacity models to describe the battery operation. These models may lead to unpractical results since the current flow is governed by limiters rather than physical laws. Additionally, phenomena related with battery degradation, which decreases the nominal capacity and enhances the heat generation are also not considered in this approach.
Technical Paper

Conceptual Model for the Start of Combustion Timing in the Range from RCCI to Conventional Dual Fuel

2022-03-29
2022-01-0468
In the challenge to reduce CO2, NOx and PM emissions, the application of natural gas or biogas in engines is a viable approach. In heavy duty and marine, either a conventional dual fuel (CDF), or a reactivity-controlled compression ignition (RCCI) approach is feasible on existing diesel engines. In both technologies a pilot diesel injection is used to ignite the premixed natural gas. However, the influence of injection-timing and -pressure on the start of combustion timing (SOC) is opposite between both modes. For a single operating point these relations can be explained by a detailed CFD simulation, but an intuitive overall explanation is lacking. This makes it difficult to incorporate both modes into one engine application, using a single controller. In an experimental campaign by the authors, on a medium speed engine, the lowest emissions were found to be very close to the SOC corresponding to the transition from RCCI to CDF.
Technical Paper

OMEx Fuel and RCCI Combustion to Reach Engine-Out Emissions Beyond the Current EURO VI Legislation

2021-09-05
2021-24-0043
Emissions regulations for engine and vehicle manufacturers are bound to become more limiting to prevent greenhouse gas emissions and mitigate the negative effects that potentiate global warming. To fulfill the energy demand necessary in the transportation sector for the short-to-medium term, a parallel optimization of the internal combustion engine, powertrain and fuels is necessary. The combination of novel combustion modes like the reactivity-controlled compression ignition (RCCI), that seeks the benefits of both compression ignition and spark ignition engines, with the so-called e-fuels, that reduce the carbon footprint from well-to-wheel, is worth exploring. This work investigates the potential of the RCCI concept using OMEx-gasoline to reduce the engine-out emissions beyond the current EURO VI legislation. To do so, eight representative operating conditions from several driving cycles for heavy-duty vehicles will be explored experimentally.
Technical Paper

Modeling of Reactivity Controlled Compression Ignition Combustion Using a Stochastic Reactor Model Coupled with Detailed Chemistry

2021-09-05
2021-24-0014
Advanced combustion concepts such as reactivity controlled compression ignition (RCCI) have been proven to be capable of fundamentally improve the conventional Diesel combustion by mitigating or avoiding the soot-NOx trade-off, while delivering comparable or better thermal efficiency. To further facilitate the development of the RCCI technology, a robust and possibly computationally efficient simulation framework is needed. While many successful studies have been published using 3D-CFD coupled with detailed combustion chemistry solvers, the maturity level of the 0D/1D based software solution offerings is relatively limited. The close interaction between physical and chemical processes challenges the development of predictive numerical tools, particularly when spatial information is not available.
Technical Paper

Numerical Estimation of Wiebe Function Parameters Using Artificial Neural Networks in SI Engine

2021-04-06
2021-01-0379
In modeling an Internal Combustion Engine, the combustion sub-model plays a critical role in the overall simulation of the engine as it provides the Mass Fraction Burned (MFB). Analytically, the Heat Release Rate (HRR) can be obtained using the Wiebe function, which is nothing more than a mathematical formulation of the MFB. The mentioned function depends on the following four parameters: efficiency parameter, shape factor, crankshaft angle, and duration of the combustion. In this way, the Wiebe function can be adjusted to experimentally measured values of the mass fraction burned at various operating points using a least-squares regression, and thus obtaining specific values for the unknown parameters. Nevertheless, the main drawback of this approach is the requirement of testing the engine at a given engine load/speed condition. Furthermore, the main objective of this study is to propose a predictive model of the Wiebe parameters for any operating point of the tested SI engine.
Technical Paper

Influence of Injection Timing on Equivalence Ratio Stratification of Methanol and Isooctane in a Heavy-Duty Compression Ignition Engine

2020-09-15
2020-01-2069
CO2 is a greenhouse gas that is believed to be one of the main contributors to global warming. Recent studies show that a combination of methanol as a renewable fuel and advanced combustion concepts could be a promising future solution to alleviate this problem. However, high unburned hydrocarbon (UHC) and carbon monoxide (CO) emissions can be stated as the main drawback in low load operations when using methanol under advanced combustion concepts. This issue can be mitigated by modifying the stratification of the local equivalence ratio to achieve a favorable level. The stratifications evolved, and the regimes that can simultaneously produce low emissions, and high combustion efficiency can be identified by sweeping the injection timing from homogeneous charge compression ignition (HCCI) to partially premixed combustion (PPC). Understanding how the stratification of the local equivalence ratio for methanol evolves during the sweep is essential to gain these benefits.
Technical Paper

Surrogate Fuel Formulation to Improve the Dual-Mode Dual-Fuel Combustion Operation at Different Operating Conditions

2020-09-15
2020-01-2073
Dual-mode dual-fuel combustion is a promising combustion concept to achieve the required emissions and CO2 reductions imposed by the next standards. Nonetheless, the fuel formulation requirements are stricter than for the single-fuel combustion concepts as the combustion concept relies on the reactivity of two different fuels. This work investigates the effect of the low reactivity fuel sensitivity (S=RON-MON) and the octane number at different operating conditions representative of the different combustion regimes found during the dual-mode dual-fuel operation. For this purpose, experimental tests were performed using a PRF 95 with three different sensitivities (S0, S5 and S10) at operating conditions of 25% load/950 rpm, 50%/1800 rpm and 100%/2200 rpm. Moreover, air sweeps varying ±10% around a reference air mass were performed at 25%/1800 rpm and 50%/1800 rpm. Conventional diesel fuel was used as high reactivity fuel in all the cases.
Technical Paper

Experimental and Numerical Assessment of Active Pre-chamber Ignition in Heavy Duty Natural Gas Stationary Engine

2020-04-14
2020-01-0819
Gas engines (fuelled with CNG, LNG or Biogas) for generation of power and heat are, to this date, taking up larger shares of the market with respect to diesel engines. In order to meet the limit imposed by the TA-Luft regulations on stationary engines, lean combustion represents a viable solution for achieving lower emissions as well as efficiency levels comparable with diesel engines. Leaner mixtures however affect the combustion stability as the flame propagation velocity and consequently heat release rate are slowed down. As a strategy to deliver higher ignition energy, an active pre-chamber may be used. This work focuses on assessing the performance of a pre-chamber combustion configuration in a stationary heavy-duty engine for power generation, operating at different loads, air-to-fuel ratios and spark timings.
Technical Paper

Impact of Multiple Injection Strategies on Performance and Emissions of Methanol PPC under Low Load Operation

2020-04-14
2020-01-0556
There is growing global interest in using renewable alcohols to reduce the greenhouse gases and the reliance on conventional fossil fuels. Recent studies show that methanol combined with partially premixed combustion provide clear performance and emission benefits compared to conventional diesel diffusion combustion. Nonetheless, high unburned hydrocarbon (HC) and carbon monoxide (CO) emissions can be stated as the main PPC drawback in light load condition when using high octane fuel such as Methanol with single injection strategy. Thus, the present experimental study has been carried out to investigate the influence of multiple injection strategies on the performance and emissions with methanol fuel in partially premixed combustion. Specifically, the main objective is to reduce HC, CO and simultaneously increase the gross indicated efficiency compared to single injection strategy.
Journal Article

Infrared/Visible Optical Diagnostics of RCCI Combustion with Dieseline in a Compression Ignition Engine

2020-04-14
2020-01-0557
Compression ignition engines are widely used for transport and energy generation due to their high efficiency and low fuel consumption. To minimize the environmental impact of this technology, the pollutant emissions levels at the exhaust are strictly regulated. To reduce the after-treatment needs, alternative strategies as the low temperature combustion (LTC) concepts are being investigated recently. The reactivity controlled compression ignition (RCCI) uses two fuels (direct- and port- injected) with different reactivity to control the in-cylinder mixture reactivity by adjusting the proportion of both fuels. In spite of the proportion of the port-injected fuel is typically higher than the direct-injected one, the characteristics of the latter play a main role on the combustion process. Use of gasoline for direct injection is attractive to retard the start of combustion and to improve the air-fuel mixing process.
Technical Paper

Dual-Fuel Ethanol-Diesel Technology Applied in Mild and Full Hybrid Powertrains

2019-09-09
2019-24-0115
The increasingly stringent emissions regulations together with the demand of highly efficient vehicles from the customers, lead to rapid developments of distinct powertrain solutions, especially when the electrification is present in a certain degree. The combination of electric machines with conventional powertrains diversifies the powertrain architectures and brings the opportunity to save energy in greater extents. On the other hand, alternative combustion modes as reactivity controlled compression ignition (RCCI) have shown to provide simultaneous ultra-low NOx and soot emissions with similar or better thermal efficiency than conventional diesel combustion (CDC). In addition, it is necessary to introduce more renewable fuels as ethanol to reduce the total CO2 emitted to the atmosphere, also called well-to-wheel (WTW) emission, in the transport sector.
Technical Paper

PIV and DBI Experimental Characterization of Air Flow-Spray Interaction and Soot Formation in a Single Cylinder Optical Diesel Engine Using a Real Bowl Geometry Piston

2019-09-09
2019-24-0100
With demanding emissions legislations and the need for higher efficiency, new technologies for compression ignition engines are in development. One of them relies on reducing the heat losses of the engine during the combustion process as well as to devise injection strategies that reduce soot formation. Therefore, it is necessary a better comprehension about the turbulent kinetic energy (TKE) distribution inside the cylinder and how it is affected by the interaction between air flow motion and fuel spray. Furthermore, new diesel engines are characterized by massive decrease of NOx emissions. Therefore, considering the well-known NOx-soot trade-off, it is necessary a better comprehension and overall quantification of soot formation and how the different injection strategies can impact it.
Technical Paper

Combined CFD - PIV Methodology for the Characterization of Air Flow in a Diesel Engine

2018-09-10
2018-01-1769
It is known that in-cylinder airflow structures during intake and compression strokes deeply affects the combustion process in compression ignition (CI) engines. This work presents a methodology for the analysis of the swirling structures by means of the CFD proprietary code Converge 2.3. The methodology is based on the CFD modelling and the comparison of results with in-cylinder velocity fields measured by particle image velocimetry (PIV). Furthermore, the analysis is extended to the accuracy evaluation of other methods available to define the flow in the cylinder of internal combustion engines, such as experiments in steady flow rigs. These methods, in junction with simple phenomenological models, have been traditionally used to determine some of the fundamental variables that define the in-cylinder flow in ICE engines. The CFD analysis is focused in the flow structures around top dead centre (TDC) at the end of the compression stroke.
X