Refine Your Search

Search Results

Viewing 1 to 15 of 15
Technical Paper

Combustion Behavior of n-Heptane, Isooctane, Toluene and Blends under HCCI Conditions in the Pressure-Temperature Diagram

Homogeneous charge compression ignition (HCCI) experiments were run with the aid of a Cooperative fuel research (CFR) engine, operating at 600 rpm and under very lean conditions (ϕ = 0.3). This study seeks to examine the combustion behavior of different fuels by finding the pressure-temperature (p-t) conditions that instigate the start of combustion, and the transition from low temperature combustion to principal combustion. The pressure-temperature diagram emphasizes p-t conditions according to their traces through the compression stroke. In each fuel tested, p-t traces were examined by a sweep of the intake temperature; and for each experimental point, combustion phasing was maintained at top dead center by adjusting the compression ratio of the engine. In addition to the p-t diagram, results were analyzed using a compression ratio-intake temperature diagram, which showed the compression ratio required with respect to intake temperature.
Journal Article

Autoignition of Isooctane beyond RON and MON Conditions

The present study experimentally examines the low-temperature autoignition area of isooctane within the in-cylinder pressure-in-cylinder temperature map. Experiments were run with the help of a Cooperative Fuel Research (CFR) engine. The boundaries of this engine were extended so that experiments could be performed outside the domain delimited by research octane number (RON) and motor octane number (MON) traces. Since homogeneous charge compression ignition (HCCI) combustion is governed by kinetics, the rotation speed for all the experiments was set at 600 rpm to allow time for low-temperature heat release (LTHR). All the other parameters (intake pressure, intake temperature, compression ratio, and equivalence ratio) were scanned, such as the occurrence of isooctane combustion. The principal results showed that LTHR for isooctane occurs effortlessly under high intake pressure (1.3 bar) and low intake temperature (25 °C).
Technical Paper

Analysis of Transition from HCCI to CI via PPC with Low Octane Gasoline Fuels Using Optical Diagnostics and Soot Particle Analysis

In-cylinder visualization, combustion stratification, and engine-out particulate matter (PM) emissions were investigated in an optical engine fueled with Haltermann straight-run naphtha fuel and corresponding surrogate fuel. The combustion mode was transited from homogeneous charge compression ignition (HCCI) to conventional compression ignition (CI) via partially premixed combustion (PPC). Single injection strategy with the change of start of injection (SOI) from early to late injections was employed. The high-speed color camera was used to capture the in-cylinder combustion images. The combustion stratification was analyzed based on the natural luminosity of the combustion images. The regulated emission of unburned hydrocarbon (UHC), carbon monoxide (CO) and nitrogen oxides (NOX) were measured to evaluate the combustion efficiency together with the in-cylinder rate of heat release.
Technical Paper

Combustion Stratification for Naphtha from CI Combustion to PPC

This study demonstrates the combustion stratification from conventional compression ignition (CI) combustion to partially premixed combustion (PPC). Experiments are performed in an optical CI engine at a speed of 1200 rpm for diesel and naphtha (RON = 46). The motored pressure at TDC is maintained at 35 bar and fuelMEP is kept constant at 5.1 bar to account for the difference in fuel properties between naphtha and diesel. Single injection strategy is employed and the fuel is injected at a pressure of 800 bar. Photron FASTCAM SA4 that captures in-cylinder combustion at the rate of 10000 frames per second is employed. The captured high speed video is processed to study the combustion homogeneity based on an algorithm reported in previous studies. Starting from late fuel injection timings, combustion stratification is investigated by advancing the fuel injection timings. For late start of injection (SOI), a direct link between SOI and combustion phasing is noticed.
Technical Paper

Applicability of Ionization Current Sensing Technique with Plasma Jet Ignition Using Pre-Chamber Spark Plug in a Heavy Duty Natural Gas Engine

This article deals with study of ionization current sensing technique's signal characteristics while operating with pre-chamber spark plug to achieve plasma jet ignition in a 6 cylinder 9 liter turbo-charged natural gas engine under EGR and excess air dilution. Unlike the signal with conventional spark plug which can be divided into distinct chemical and thermal ionization peaks, the signal with pre-chamber spark plug shows a much larger first peak and a negligible second peak thereafter. Many studies in past have found the time of second peak coinciding with the time of maximum cylinder pressure and this correlation has been used as an input to combustion control systems but the absence of second peak makes application of this concept difficult with pre-chamber spark plug.
Technical Paper

Investigating Mode Switch from SI to HCCI using Early Intake Valve Closing and Negative Valve Overlap

This study investigates mode switching from spark ignited operation with early intake valve closing to residual gas enhanced HCCI using negative valve overlap on a port-fuel injected light-duty diesel engine. A mode switch is demonstrated at 3.5 bar IMEPnet and 1500 rpm. Valve timings and fuel amount have to be selected carefully prior to the mode switch. During mode transition, IMEPnet deviates by up to 0.5 bar from the set point. The time required to return to the set point as well as the transient behavior of the engine load varies depending on which control structure that is used. Both a model-based controller and a PI control approach were implemented and evaluated in experiments. The controllers were active in HCCI mode. The model-based controller achieved a smoother transition and while using it, the transition could be accomplished within three engine cycles.
Technical Paper

Vehicle Driving Cycle Simulation of a Pneumatic Hybrid Bus Based on Experimental Engine Measurements

In the study presented in this paper, a vehicle driving cycle simulation of the pneumatic hybrid has been conducted. The pneumatic hybrid powertrain has been modeled in GT-Power and validated against experimental data. The GT-Power engine model has been linked with a MATLAB/simulink vehicle model. The engine in question is a single-cylinder Scania D12 diesel engine, which has been converted to work as a pneumatic hybrid. The base engine model, provided by Scania, is made in GT-power and it is based on the same engine configuration as the one used in real engine testing. During pneumatic hybrid operation the engine can be used as a 2-stroke compressor for generation of compressed air during vehicle deceleration and during vehicle acceleration the engine can be operated as a 2-stroke air-motor driven by the previously stored pressurized air.
Technical Paper

Influence of the Wall Temperature and Combustion Chamber Geometry on the Performance and Emissions of a Mini HCCI Engine Fueled with Diethyl Ether

Nowadays for small-scale power generation there are electrochemical batteries and mini engines. Many efforts have been done for improving the power density of the batteries but unfortunately the value of 1 MJ/kg seems to be asymptotic. If the energy source is an organic fuel which has an energy density of around 29 MJ/kg with a minimum overall efficiency of only 3.5%, this device would surpass the batteries. This paper is the fifth of a series of publications aimed to study the HCCI combustion process in the milli domain at high engine speed in order to design and develop VIMPA, Vibrating Microengine for Low Power Generation and Microsystems Actuation. Previous studies ranged from general characterization of the HCCI combustion process by using metal and optical engines, to more specific topics for instance the influence of the boundary layer and quenching distance on the quality of the combustion.
Technical Paper

Influence of the Compression Ratio on the Performance and Emissions of a Mini HCCI Engine Fueled Ether with Diethyl

Power supply systems play a very important role in applications of everyday life. Mainly, for low power generation, there are two ways of producing energy: electrochemical batteries and small engines. In the last few years many improvements have been carried out in order to obtain lighter batteries with longer duration but unfortunately the energy density of 1 MJ/kg seems to be an asymptotic value. If the energy source is an organic fuel with an energy density of around 29 MJ/kg and a minimum overall efficiency of only 3.5%, this device can surpass the batteries. Nowadays the most efficient combustion process is HCCI combustion which is able to combine high energy conversion efficiency and low emission levels with a very low fuel consumption. In this paper, an investigation has been carried out concerning the effects of the compression ratio on the performance and emissions of a mini, Vd = 4.11 [cm3], HCCI engine fueled with diethyl ether.
Technical Paper

Mini High Speed HCCI Engine Fueled with Ether: Load Range, Emission Characteristics and Optical Analysis

Power supply systems play a very important role in everyday life applications. There are mainly two ways of producing energy for low power generation: electrochemical batteries and small engines. In the last few years, many improvements have been carried out in order to obtain lighter batteries with longer durations but unfortunately the energy density of 1 MJ/kg seems to be an asymptotic value. An energy source constituted of an organic fuel with an energy density around 29 MJ/kg and a minimum overall efficiency of only 3.5% could surpass batteries. Nowadays, the most efficient combustion process is HCCI combustion which has the ability to combine a high energy conversion efficiency with low emission levels and a very low fuel consumption. The present paper describes an investigation carried out on a modified model airplane engine, on how a pure HCCI combustion behaves in a small volume, Vd = 4.11 cm3, at very high engine speeds (up to 17,500 [rpm]).
Technical Paper

Influence of Inlet Temperature and Hot Residual Gases on the Performances of a Mini High Speed Glow Plug Engine

Nowadays the power supplying systems have a fundamental importance for all small and portable devices. For low power applications, there are two main ways for producing power: electrochemical batteries and mini engines. Even though in recent years many developments have been carried out in improving the design of batteries, the energy density of 1MJ/kg seems to be an asymptotic value. If the energy source is a hydrocarbon fuel, whose energy density is 46 MJ/kg, with an overall efficiency of only 2.5 % it is possible to surpass the electrochemical batteries. On the other hand, having a mini engine, as energy source, implies three main problems: vibrations, noise and emissions. A light (230 g) model airplane engine with a displacement volume of 4.11 cm3 and a geometrical compression ratio of 13.91 has been studied. The work carried out in this paper can be divided basically in three parts.
Technical Paper

FPGA Controlled Pneumatic Variable Valve Actuation

A control system for pneumatic variable valve actuation has been designed, implemented and tested in a single cylinder test engine with valve actuators provided by Cargine Engineering AB. The design goal for the valve control system was to achieve valve lifts between 2 and 12 mm over an engine speed interval of 300 to 2500 rpm. The control system was developed using LabView and implemented on the PCI 7831. The design goals were fulfilled with some limitations. Due to physical limitations in the actuators, stable operation with valve lifts below 2.6 mm were not possible. During the engine testing the valve lift was limited to 7 mm to guarantee piston clearance. Different valve strategies for residual gas HCCI combustion were generated on a single-cylinder test engine.
Technical Paper

Start of Injection Strategies for HCCI-combustion

Homogeneous Charge Compression Ignition (HCCI) has a great potential for low NOx emissions but problems with emissions of unburned hydrocarbons (HC). One way of reducing the HC is to use direct injection. The purpose of this paper is to present experimental data on the trade off between NOx and HC. Injection timing, injection pressure and nozzle configuration all effect homogeneity of the mixture and thus the NOx and HC emissions. The engine studied is a single cylinder version of a Scania D12 that represents a modern heavy-duty truck size engine. A common rail (CR) system has been used to control injection pressure and timing. The combustion using injectors with different nozzle hole diameters and spray angle, both colliding and non-colliding, has been studied. The NOx emission level changes with start of injection (SOI) and the levels are low for early injection timing, increasing with retarded SOI. Different injectors produce different NOx levels.
Technical Paper

The Potential of Using the Ion-Current Signal for Optimizing Engine Stability - Comparisons of Lean and EGR (Stoichiometric) Operation

Ion current measurements can give information useful for controlling the combustion stability in a multi-cylinder engine. Operation near the dilution limit (air or EGR) can be achieved and it can be optimized individually for the cylinders, resulting in a system with better engine stability for highly diluted mixtures. This method will also compensate for engine wear, e.g. changes in volumetric efficiency and fuel injector characteristics. Especially in a port injected engine, changes in fuel injector characteristics can lead to increased emissions and deteriorated engine performance when operating with a closed-loop lambda control system. One problem using the ion-current signal to control engine stability near the lean limit is the weak signal resulting in low signal to noise ratio. Measurements presented in this paper were made on a turbocharged 9.6 liter six cylinder natural gas engine with port injection.
Technical Paper

Technologies for Carbon-Neutral Passenger Transport - a Comparative Analysis

Road transport has become a large source of CO2 emission and accounted in 1998 for about 27% of the CO2 emission in Sweden. Efficient energy use and the use of renewable energy sources are main options for reducing CO2 emission from vehicles in the future. In this study, the use of energy carriers based on renewable energy sources in battery-powered electric vehicles (BPEVs), fuel-cell electric vehicles (FCEVs), hybrid electric vehicles (HEVs) and internal combustion engine vehicles (ICEVs) is compared regarding energy efficiency, emission and cost. The cost calculations include energy, environmental and vehicle costs. The potential for non-technical measures to contribute to a reduction of road transport CO2 emission is also briefly discussed and related to the potential for technical measures. There is the potential to double the primary energy efficiency compared with the current level by utilizing vehicles with electric drivetrains.