Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Automatic Drive Train Management System for 4WD Vehicle Based on Road Situation Identification

2018-04-03
2018-01-0987
The slip ratio of vehicle driving wheels is easily beyond a reasonable range in the complex and changeable driving conditions. In order to achieve the adaptive acceleration slip regulation of four-wheel driving (4WD) vehicle, a fuzzy control strategy of Automatic Drive Train Management (ADM) system based on road situation identification was proposed in this paper. Firstly, the influence on the control strategy of ADM system was analyzed from two aspects, which included the different road adhesion coefficients and the vehicle’s ramp driving state. In the meantime several quantitative expressions of relevant control parameters were derived. Secondly, the fuzzy logic control algorithm was adopted to design a road situation identification subsystem and a ramp driving state identification subsystem respectively. The former was based on the μ-S curve model, and the latter was based on the vehicle driving equilibrium equation.
Technical Paper

Steering Control Based on the Yaw Rate and Projected Steering Wheel Angle in Evasion Maneuvers

2018-04-03
2018-01-0030
When automobiles are at the threat of collisions, steering usually needs shorter longitudinal distance than braking for collision avoidance, especially under the condition of high speed or low adhesion. Thus, more collision accidents can be avoided in the same situation. The steering assistance is in need since the operation is hard for drivers. And considering the dynamic characteristics of vehicles in those maneuvers, the real-time and the accuracy of the assisted algorithms is essential. In view of the above problems, this paper first takes lateral acceleration of the vehicle as the constraint, aiming at the collision avoidance situation of the straight lane and the stable driving inside the curve, and trajectory of the collision avoidance is derived by a quintic polynomial.
Technical Paper

Nonlinear Control of Vehicle Chassis Planar Stability Based on T-S Fuzzy Model

2016-04-05
2016-01-0471
In the past decades, the stability of vehicles has been improved significantly by use of variety of chassis control systems such as Antilock Braking System (ABS), Electric Stability Program (ESP) and Active Front Steering (AFS). Recently, in order to further improve the performance of vehicles, more and more researches are focused on the integration control of multiple degrees of freedom of vehicle dynamic. However, in order to control multiple degrees of freedom simultaneously, the nonlinear problems caused by the coupling between different degrees of freedom have to be solved, which is always a difficult task. In this paper, a three-degrees-of-freedom single track vehicle model, in which some nonlinear terms are considered, is built firstly. Then, the nonlinear model is processed by the fuzzy technique and the T-S fuzzy model is designed.
Technical Paper

MPC-Based Trajectory Tracking Control for Intelligent Vehicles

2016-04-05
2016-01-0452
In this paper, a model predictive control (MPC) based trajectory tracking scheme utilizing steering wheel and braking or acceleration pedal is proposed for intelligent vehicles. The control objective is to track a desired trajectory which is obtained from the trajectory planner. The proposed control is based on a simplified third-order vehicle model, which consists of longitudinal vehicle dynamics along with a commonly used bicycle model. A nonlinear model predictive control (NMPC) is adopted in order to follow a given path by controlling front steering, braking and traction, while fulfilling various physical and design constraints. In order to reduce the computational burden, the NMPC is converted to a linear time-varying (LTV) MPC based on successive online linearization of the nonlinear system model. Two different test conditions have been used to verify the effectiveness of the proposed approaches through simulations using Matlab and CarSim.
Journal Article

Function-Based Architecture Design for Next-Generation Automotive Brake Controls

2016-04-05
2016-01-0467
This paper presents a unified novel function-based brake control architecture, which is designed based on a top-down approach with functional abstraction and modularity. The proposed control architecture includes a commands interpreter module, including a driver commands interpreter to interpret driver intention, and a command integration to integrate the driver intention with senor-guided active driving command, state observers for estimation of vehicle sideslip, vehicle speed, tire lateral and longitudinal slips, tire-road friction coefficient, etc., a commands integrated control allocation module which aims to generate braking force and yaw moment commands and provide optimal distribution among four wheels without body instability and wheel lock or slip, a low-level control module includes four wheel pressure control modules, each of which regulates wheel pressure by fast and accurate tracking commanded wheel pressure.
Journal Article

Integrated Longitudinal Vehicle Dynamics Control with Tire/Road Friction Estimation

2015-04-14
2015-01-0645
The longitudinal dynamics control is an essential task of vehicle dynamics control. In present, it is usually applied by adjusting the slip ratio of driving wheels to achieve satisfactory performances both in stability and accelerating ability. In order to improve its performances, the coordination of different subsystems such as engine, transmission and braking system has to be considered. In addition, the proposed algorithms usually adopt the threshold methods based on less road condition information for simpleness and quick response, which cannot achieve optimal performance on various road conditions. In this paper, an integrated longitudinal vehicle dynamics control algorithm with tire/road friction estimation was proposed. First, a road identification algorithm was designed to estimate tire forces of driving wheels and the friction coefficient by the method of Kalman Filter and Recursive Least Squares (RLS).
X