Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Technical Paper

A Comprehensive Hybrid Vehicle Model for Energetic Analyses on Different Powertrain Architectures

2019-09-09
2019-24-0064
In the global quest for preventing fossil fuel depletion and reducing air pollution, hybridization plays a fundamental role to achieve cleaner and more fuel-efficient automotive propulsion systems. While hybrid powertrains offer many opportunities, they also present new developmental challenges. Due to the many variants and possible architectures, development issues, such as the definition of powertrain concepts and the optimization of operating strategies, are becoming more and more important. The paper presents model-based fuel economy analyses of different hybrid vehicle configurations, depending on the position of the electric motor generator (EMG). The analyses are intended to support the design of powertrain architecture and the components sizing, depending on the driving scenario, with the aim of reducing fuel consumption and CO2 emissions.
Technical Paper

Development and Experimental Validation of a Control Oriented Model of a Catalytic DPF

2019-04-02
2019-01-0985
1 The wall-flow Diesel Particulate Filter (DPF) is currently the most common after-treatment system used to meet the particulate emissions regulations for automotive engines. Today’s technology shows the best balance between filtration efficiency and back-pressure in the engine exhaust pipe. During the accumulation phase the pressure drop across the filter increases, thus requiring periodic regeneration of the DPF through after and post fuel injection strategies. This paper deals with the development of a control oriented model of a catalytic silicon carbide (SiC) wall flow DPFs with CuFe2O4 loading for automotive Diesel engines. The model is intended to be used for the real-time management of the regeneration process, depending on back-pressure and thermal state.
Technical Paper

Enhancing Cruise Controllers through Finite-Horizon Driving Mission Optimization for Passenger Vehicles

2018-04-03
2018-01-1180
In the last few years, several studies have proved the benefits of exploiting information about the road topography ahead of the vehicle to adapt vehicle cruising for fuel consumption reduction. Recent technologies have brought on-board more road information enabling the optimization of the driving profile for fuel economy improvement. In the present paper, a cruise controller able to lowering vehicle fuel consumption taking into account the characteristics of the road the vehicle is traveling through is presented. The velocity profile is obtained by minimizing via discrete dynamic programming the energy spent to move the vehicle. In order to further enhance vehicle fuel efficiency, also the gear shifting schedule is optimized, allowing to avoid useless gear shifts and choose the most suitable gear to match current road load and keeping the engine in its maximum efficiency range. Despite the optimality of the solution provided, dynamic programming entails high computational time.
Technical Paper

Development of a Cruise Controller Based on Current Road Load Information with Integrated Control of Variable Velocity Set-Point and Gear Shifting

2017-03-28
2017-01-0089
Road topography has a remarkable impact on vehicle fuel consumption for both passenger and heavy duty vehicles. In addition, erroneous or non-optimized scheduling of both velocity set-point and gear shifting may be detrimental for fuel consumption and performance. Recent technologies have made road data, such as elevation or slope, either available or measurable on board, thus making possible the exploitation of this additional information in innovative controllers. The aim of this paper is the development of a smart, fuel-economy oriented controller adapting cruising speed and engaged gear to current road load (i.e. local slope). Unlike traditional cruise controllers, the velocity set-point is not constant, but it is set by applying a mathematical transformation of the current slope, accounting for the mission time duration as well.
Technical Paper

Modeling and Optimization of Organic Rankine Cycle for Waste Heat Recovery in Automotive Engines

2016-04-05
2016-01-0207
In the last years, the research effort of the automotive industry has been mainly focused on the reduction of CO2 and pollutants emissions. In this scenario, concepts such as the engines downsizing, stop/start systems as well as more costly full hybrid solutions and, more recently, Waste Heat Recovery technologies have been proposed. These latter include Thermo-Electric Generator (TEG), Organic Rankine Cycle (ORC) and Electric Turbo-Compound (ETC) that have been practically implemented on few heavy-duty applications but have not been proved yet as effective and affordable solutions for passenger cars. The paper deals with modeling of ORC power plant for simulation analyses aimed at evaluating the opportunities and challenges of its application for the waste heat recovery in a compact car, powered by a turbocharged SI engine.
Technical Paper

Enhanced Multi-Zone Model for Medium Pressure Injection Spray and Fuel-Wall Impingement in Light-Duty Diesel Engines

2015-09-06
2015-24-2398
Nowadays the high competition reached by the automotive market forces Original Equipment Manufacturers (OEMs) towards innovative solutions. Strict emission standards and fuel economy targets make the work hard to be accomplished. Therefore modern engines feature complex architecture and embed new devices for Exhaust Gas Recirculation (EGR), turbocharging (e.g. multi-stage compressors), gas after-treatment (e.g. the Selective Catalyst Reduction (SCR)) and fuel injection (either high or low pressure). In this context the Engine Management System (EMS) plays a fundamental role to optimize engine operation. The paper deals with fuel spray and combustion simulation by a multi-zone phenomenological model aimed at the steady-state optimal tuning of the injection pattern.
Technical Paper

Estimation of the Engine Thermal State by in-Cylinder Pressure Measurement in Automotive Diesel Engines

2015-04-14
2015-01-1623
International regulations continuously restrict the standards for the exhaust emissions from automotive engines. In order to comply with these requirements, innovative control and diagnosis systems are needed. In this scenario the application of methodologies based on the in-cylinder pressure measurement finds widespread applications. Indeed, almost all engine thermodynamic variables useful for either control or diagnosis can be derived from the in-cylinder pressure. Apart for improving the control accuracy, the availability of the in-cylinder pressure signal might also allow reducing the number of existing sensors on-board, thus lowering the equipment costs and the engine wiring complexity. The paper focuses on the detection of the engine thermal state, which is fundamental to achieve suitable control of engine combustion and after-treatment devices.
Technical Paper

A Comprehensive Powertrain Model to Evaluate the Benefits of Electric Turbo Compound (ETC) in Reducing CO2 Emissions from Small Diesel Passenger Cars

2014-04-01
2014-01-1650
In the last years the automotive industry has been involved in the development and implementation of CO2 reducing concepts such as the engines downsizing, stop/start systems as well as more costly full hybrid solutions and, more recently, waste heat recovery technologies. These latter include ThermoElectric Generator (TEG), Rankine cycle and Electric Turbo Compound (ETC) that have been practically implemented on few heavy-duty application but have not been proved yet as effective and affordable solutions for the automotive industry. The paper deals with the analysis of opportunities and challenges of the Electric Turbo Compound for automotive light-duty engines. In the ETC concept the turbine-compressor shaft is connected to an electric machine, which can work either as generator or motor. In the former case the power can satisfy the vehicle electrical demand to drive the auxiliaries or stored in the batteries.
Journal Article

Modeling Analysis of Waste Heat Recovery via Thermo Electric Generators for Fuel Economy Improvement and CO2 Reduction in Small Diesel Engines

2014-04-01
2014-01-0663
This paper deals with modeling and analysis of the integration of ThermoElectric generators (TEG) into a conventional vehicle, specifically aimed at recovering waste heat from exhaust gases. The model is based on existing and commercial thermoelectric materials, specifically Bi2Te3, having ZTs not exceeding 1 and efficiency below 5%, but a trade-off between cost and performance that would be acceptable for automotive applications. TEGs operate on the principle of thermoelectric energy conversion via Seebeck effect, utilizing thermal gradients to generate electric current, with exhaust gases at the hot side and coolant at the cold side. In the simulated configuration the TEG converters are interfaced with the battery/alternator supporting the operation of the vehicle, reducing the energy consumption due to electrical accessories and HVAC.
Journal Article

Real-Time Estimation of Intake O2 Concentration in Turbocharged Common-Rail Diesel Engines

2013-04-08
2013-01-0343
Automotive engines and control systems are more and more sophisticated due to increasingly restrictive environmental regulations. Particularly in both diesel and SI lean-burn engines NOx emissions are the key pollutants to deal with and sophisticated Engine Management System (EMS) strategies and after-treatment devices have to be applied. In this context, the in-cylinder oxygen mass fraction plays a key-role due its direct influence on the NOx formation mechanism. Real-time estimation of the intake O₂ charge enhances the NOx prediction during engine transients, suitable for both dynamic adjustments of EMS strategies and management of aftertreatment devices. The paper focuses on the development and experimental validation of a real-time estimator of O₂ concentration in the intake manifold of an automotive common-rail diesel engine, equipped with turbocharger and EGR system.
Technical Paper

Tuning of the Engine Control Variables of an Automotive Turbocharged Diesel Engine via Model Based Optimization

2011-09-11
2011-24-0146
The paper deals with the steady-state optimal tuning of control variables for an automotive turbocharged Diesel engine. The optimization analysis is based on an engine simulation model, composed of a control oriented model of turbocharger integrated with a predictive multi-zone combustion model, which allows accounting for the impact of control variables on engine performance, NOx and soot emissions and turbine outlet temperature. This latter strongly affects conversion efficiency of after treatment devices therefore its estimation is of great interest for both control and simulation of tailpipe emissions. The proposed modeling structure is aimed to support the engine control design for common-rail turbocharged Diesel engines with multiple injections, where the large number of control parameters requires a large experimental tuning effort.
Technical Paper

Experimental Validation of a Neural Network Based A/F Virtual Sensor for SI Engine Control

2006-04-03
2006-01-1351
The paper addresses the potentialities of Recurrent Neural Networks (RNN) for modeling and controlling Air-Fuel Ratio (AFR) excursions in Spark Ignited (SI) engines. Based on the indications provided by previous studies devoted to the definition of optimal training procedures, an RNN forward model has been identified and tested on a real system. The experiments have been conducted by altering the mapped injection time randomly, thus making the effect of fuel injection on AFR dynamics independent of the other operating variables, namely manifold pressure and engine speed. The reference engine has been tested by means of an integrated system of hardware and software tools for engine test automation and control strategies prototyping. The developed forward model has been used to generate a reference AFR signal to train another RNN model aimed at simulating the inverse AFR dynamics by evaluating the fuel injection time as function of AFR, manifold pressure and engine speed.
Technical Paper

A Model for the Unsteady Motion of Pollutant Particles in the Exhaust System of an I.C. Engine

2003-03-03
2003-01-0721
The measurement of the various pollutant species (HC, CO, NO, etc.) has become one of the main issues in internal combustion engine research. This interest concerns not only their quantitative measurement but also the study of the mechanism of their formation. In fact, pollutant species concentration can be used as an indicator for the combustion characteristics. For instance, it enables the determination of a lean or a rich combustion, the percentage of EGR, etc. The purpose of this research is to investigate the behavior of pollutant gas particles in the first part of an engine exhaust system through a detailed study of the unsteady flow in the exhaust pipe. The results are intended to designate the appropriate sensor positions which ensure accurate measurement results. This investigation wants to track an inert component in the exhaust system, namely the NO gas.
Technical Paper

An Integrated System of Models for Performance and Emissions in SI Engines: Development and Identification

2003-03-03
2003-01-1052
An integrated system of phenomenological models is applied in conjunction with identification techniques to simulate SI engine performance and emissions. In the framework of a hierarchical model architecture, the model structure provides the steady state engine data required for the design and validation of synthetic engine models. This approach allows limiting the recourse to the experimental data and speeds up the engine control strategies prototyping. The model structure is composed of a multi-zone thermodynamic engine model linked to a 1-D commercial fluid-dynamic model for intake and exhaust gas flow and to a physical model for NOx exhaust emissions. In order to improve model accuracy and generalization, an identification methodology is applied to estimate the optimal parameters for the turbulent combustion model. Due to the built-in physical content, the proposed methodology requires a relatively limited amount of experimental data for characterizing the under-study engine.
Technical Paper

A Dynamic Model For Powertrain Simulation And Engine Control Design

2001-09-23
2001-24-0017
A computer code oriented to S.I. engine control and powertrain simulation is presented. The model predicts engine and driveline states, taking into account the dynamics of air and fuel flows into the intake manifold and the transient response of crankshaft, clutch, transmission gearing and vehicle. The whole model is integrated in the code O.D.E.C.S., now in use at Magneti Marelli, and is based on a hierarchical structure composed of different classes of models, ranging from black-box Neural Network to grey-box mean value models. By adopting the proposed approach, a satisfactory accuracy is achieved with limited computational demand, which makes the model suitable for the optimization of engine control strategies. Furthermore, in order to simulate the driver behavior during the assigned vehicle mission profile, two drive controllers have been implemented for throttle and brakes actuation, based on classical PID and fuzzy-logic theory.
Technical Paper

A Computer Code for S.I. Engine Control and Powertrain Simulation

2000-03-06
2000-01-0938
A computer code oriented to S.I. engine control and powertrain simulation is presented. The model, developed in Matlab-Simulink® environment, predicts engine and driveline states, taking into account the dynamics of air and fuel flows into the intake manifold and the transient response of crankshaft, transmission gearing and vehicle. The model, derived from the code O.D.E.C.S. for the optimal design of engine control strategies now in use at Magneti Marelli, is suitable both for simulation analysis and to achieve optimal engine control strategies for minimum consumption with constraints on exhaust emissions and driveability via mathematical programming techniques. The model is structured as an object oriented modular framework and has been tested for simulating powertrain system and control performance with respect to any given transient and control strategy.
Technical Paper

ODECS - A Computer Code for the Optimal Design of S.I. Engine Control Strategies

1996-02-01
960359
The computer code ODECS (Optimal Design of Engine Control Strategies) for the design of Spark Ignition engine control strategies is presented. This code has been developed starting from the author's activity in this field, availing of some original contributions about engine stochastic optimization and dynamical models. This code has a modular structure and is composed of a user interface for the definition, the execution and the analysis of different computations performed with 4 independent modules. These modules allow the following calculations: (i) definition of the engine mathematical model from steady-state experimental data; (ii) engine cycle test trajectory corresponding, to a vehicle transient simulation test such as ECE15 or FTP drive test schedule; (iii) evaluation of the optimal engine control maps with a steady-state approach.
X