Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Modelling and Control of a Novel Clutchless Multiple-Speed Transmission for Electric Vehicles

2019-09-09
2019-24-0063
Conventional electric vehicles adopt either single-speed transmissions or direct drive architecture in order to reduce cost, losses and mass. However, the integration of optimized multiple-speed transmissions is considered as a feasible method to enhance EVs performances, (i.e. top speed, acceleration and grade climbing), improving powertrain efficiency, saving battery energy and reducing customer costs. Perfectly in line with these objectives, this paper presents a patented fully integrated electric traction system, as scalable solution for electrifying light duty passenger and commercial vehicles (1.5-4.2 tons), with a focus on minibuses (<20 seats). The adoption of high-speed motor coupled to multiple-speed transmission offers the possibility of a relevant efficiency improvement, a 50% volume reduction with respect to a traditional transmission, superior output torque and power density.
Technical Paper

Enhancing Cruise Controllers through Finite-Horizon Driving Mission Optimization for Passenger Vehicles

2018-04-03
2018-01-1180
In the last few years, several studies have proved the benefits of exploiting information about the road topography ahead of the vehicle to adapt vehicle cruising for fuel consumption reduction. Recent technologies have brought on-board more road information enabling the optimization of the driving profile for fuel economy improvement. In the present paper, a cruise controller able to lowering vehicle fuel consumption taking into account the characteristics of the road the vehicle is traveling through is presented. The velocity profile is obtained by minimizing via discrete dynamic programming the energy spent to move the vehicle. In order to further enhance vehicle fuel efficiency, also the gear shifting schedule is optimized, allowing to avoid useless gear shifts and choose the most suitable gear to match current road load and keeping the engine in its maximum efficiency range. Despite the optimality of the solution provided, dynamic programming entails high computational time.
Technical Paper

Modeling and Optimization of Organic Rankine Cycle for Waste Heat Recovery in Automotive Engines

2016-04-05
2016-01-0207
In the last years, the research effort of the automotive industry has been mainly focused on the reduction of CO2 and pollutants emissions. In this scenario, concepts such as the engines downsizing, stop/start systems as well as more costly full hybrid solutions and, more recently, Waste Heat Recovery technologies have been proposed. These latter include Thermo-Electric Generator (TEG), Organic Rankine Cycle (ORC) and Electric Turbo-Compound (ETC) that have been practically implemented on few heavy-duty applications but have not been proved yet as effective and affordable solutions for passenger cars. The paper deals with modeling of ORC power plant for simulation analyses aimed at evaluating the opportunities and challenges of its application for the waste heat recovery in a compact car, powered by a turbocharged SI engine.
Technical Paper

Estimation of the Engine Thermal State by in-Cylinder Pressure Measurement in Automotive Diesel Engines

2015-04-14
2015-01-1623
International regulations continuously restrict the standards for the exhaust emissions from automotive engines. In order to comply with these requirements, innovative control and diagnosis systems are needed. In this scenario the application of methodologies based on the in-cylinder pressure measurement finds widespread applications. Indeed, almost all engine thermodynamic variables useful for either control or diagnosis can be derived from the in-cylinder pressure. Apart for improving the control accuracy, the availability of the in-cylinder pressure signal might also allow reducing the number of existing sensors on-board, thus lowering the equipment costs and the engine wiring complexity. The paper focuses on the detection of the engine thermal state, which is fundamental to achieve suitable control of engine combustion and after-treatment devices.
Journal Article

Modeling Analysis of Waste Heat Recovery via Thermo Electric Generators for Fuel Economy Improvement and CO2 Reduction in Small Diesel Engines

2014-04-01
2014-01-0663
This paper deals with modeling and analysis of the integration of ThermoElectric generators (TEG) into a conventional vehicle, specifically aimed at recovering waste heat from exhaust gases. The model is based on existing and commercial thermoelectric materials, specifically Bi2Te3, having ZTs not exceeding 1 and efficiency below 5%, but a trade-off between cost and performance that would be acceptable for automotive applications. TEGs operate on the principle of thermoelectric energy conversion via Seebeck effect, utilizing thermal gradients to generate electric current, with exhaust gases at the hot side and coolant at the cold side. In the simulated configuration the TEG converters are interfaced with the battery/alternator supporting the operation of the vehicle, reducing the energy consumption due to electrical accessories and HVAC.
Technical Paper

A Comprehensive Powertrain Model to Evaluate the Benefits of Electric Turbo Compound (ETC) in Reducing CO2 Emissions from Small Diesel Passenger Cars

2014-04-01
2014-01-1650
In the last years the automotive industry has been involved in the development and implementation of CO2 reducing concepts such as the engines downsizing, stop/start systems as well as more costly full hybrid solutions and, more recently, waste heat recovery technologies. These latter include ThermoElectric Generator (TEG), Rankine cycle and Electric Turbo Compound (ETC) that have been practically implemented on few heavy-duty application but have not been proved yet as effective and affordable solutions for the automotive industry. The paper deals with the analysis of opportunities and challenges of the Electric Turbo Compound for automotive light-duty engines. In the ETC concept the turbine-compressor shaft is connected to an electric machine, which can work either as generator or motor. In the former case the power can satisfy the vehicle electrical demand to drive the auxiliaries or stored in the batteries.
X