Refine Your Search

Topic

Search Results

Technical Paper

Potential to Reduce Nano-Particle Emission in SG-DISI Engine with Normal Butane

2019-09-09
2019-24-0022
Lean stratified combustion is a mean to dilute the fuel-air mixture leaner than stoichiometric ratio, by using stratification of fuel gradient in a spark ignition engine. Under the lean stratified combustion, differed from the stoichiometric homogeneous charge combustion, flame could propagate through extremely rich air-fuel mixture, while the global air-fuel mixture is under lean condition. The rich mixture causes considerable amount of particulate matter, but, due to large effect of efficiency improvement, the attractive point is on fuel economy compare to homogeneous charge SI combustion. The easiest way to reduce particulate matter is changing fuel to gaseous hydrocarbon, to minimize evaporating and mixing period.
Technical Paper

Particle Reduction in LPG Lean Stratified Combustion by Intake Strategies

2019-04-02
2019-01-0253
Lean stratified combustion shows high potential to reduce fuel consumption because it operates without the intervention of a throttle valve. Despite its high fuel economy potential, it emits large amounts of particulate matter (PM) because the locally rich mixture is formed at the periphery of a spark plug. Furthermore, the combustion phasing angle is not realized at MBT ignition timing, which can bring high work conversion efficiency. Since PM emission and work conversion efficiency are in a trade-off relation, this research focused on reducing PM emission through achieving high work conversion efficiency. Two intake air control strategies were examined in this research; throttle operation and late intake valve closing (LIVC). The experiment was conducted in a single cylinder spray-guided direct injection spark ignition (SG-DISI) engine with liquefied petroleum gas (LPG). The injected fuel amount was fixed so as to investigate the effect of each strategy.
Technical Paper

The Fuel Economy Improvement through the Knock Margin Expansion in a Turbocharged Gasoline Direct Injection Engine

2018-09-10
2018-01-1671
Knocking combustion limits the downsized gasoline engines’ potential for improvement with regard to fuel economy. The high in-cylinder pressure and temperature caused by the adaptation of a turbocharger aggravates the tendency of the end-gas to autoignite. Thus, the knocking combustion does not allow for further advancing of the combustion phase. In this research, the effects of the ignition and valve timings on knocking combustion were investigated under steady-state conditions. Moreover, the optimal ignition and valve timings for the transient operations were derived with the aim of a greater fuel economy improvement, based on the steady-state analysis. A 2.0 liter turbocharged gasoline direct injection engine with continuously variable valve timing (CVVT), was utilized for this experiment. 2, 10, and 18 bar brake mean effective pressure (BMEP) load conditions were used to represent the low, medium, and high load operations, respectively.
Technical Paper

Spray and Combustion of Diesel Fuel under Simulated Cold-Start Conditions at Various Ambient Temperatures

2017-09-04
2017-24-0069
The spray and combustion of diesel fuel were investigated to provide a better understanding of the evaporation and combustion process under the simulated cold-start condition of a diesel engine. The experiment was conducted in a constant volume combustion chamber and the engine cranking period was selected as the target ambient condition. Mie scattering and shadowgraph techniques were used to visualize the liquid- and vapor-phase of the fuel under evaporating non-combustion conditions (oxygen concentration=0%). In-chamber pressure and direct flame visualization were acquired for spray combustion conditions (oxygen concentration=21%). The fuel was injected at an injection pressure of 30 MPa, which is the typical pressure during the cranking period.
Technical Paper

Effect of Injector Nozzle Hole Geometry on Particulate Emissions in a Downsized Direct Injection Gasoline Engine

2017-09-04
2017-24-0111
In this study, the effect of the nozzle tip geometry on the nozzle tip wetting and particulate emissions was investigated. Various designs for the injector nozzle hole were newly developed for this study, focusing on the step hole geometry to reduce the nozzle tip wetting. The laser induced fluorescence technique was applied to evaluate the fuel wetting on the nozzle tip. A vehicle test and an emissions measurement in a Chassi-Dynamo were performed to investigate the particulate emission characteristics for injector nozzle designs. In addition, the in-cylinder combustion light signal measurement by the optical fiber sensor was conducted to observe diffusion combustion behavior during the vehicle test. Results showed that the step hole surface area is strongly related to nozzle tip wetting and particulate emissions characteristics. Injectors without the step hole and with a smaller step hole geometry showed significant reduction of nozzle tip wetting and number of particulate emissions.
Technical Paper

Effects of High-Response TiAl Turbine Wheel on Engine Performance under Transient Conditions

2015-09-01
2015-01-1881
Transient tests in a 2.0 liter in-line 4 cylinder downsizing gasoline direct injection engine were conducted under various transient conditions in order to investigate effects of lower rotational inertia of titanium aluminide alloy (TiAl) turbine wheel on engine and turbocharger performances. As a representative result, fast boost pressure build up was achieved in case of TiAl turbocharger compared to Inconel turbocharger. This result was mainly due to lower rotational inertia of TiAl turbine wheel. Engine torque build up response was also improved with TiAl turbocharger even though engine torque response gap between both turbochargers was slightly reduced due to retarded combustion phase. In addition, with advanced ignition timing, fuel consumption became less than that of Inconel turbocharger with similar engine torque response.
Technical Paper

Effects of Hydrogen Ratio and EGR on Combustion and Emissions in a Hydrogen/Diesel Dual-Fuel PCCI Engine

2015-09-01
2015-01-1815
The effects of hydrogen ratio and exhaust gas recirculation (EGR) on combustion and emissions in a hydrogen/diesel dual-fuel premixed charge compression ignition (PCCI) engine were investigated. The control of combustion phasing could be improved using hydrogen enrichment and EGR due to the retarded combustion phasing with a higher hydrogen ratio. The indicated mean effective pressure (IMEP) was increased with a higher hydrogen ratio because the hydrogen enrichment intensified the high temperature reactions and thus decreased the combustion duration. Hydrocarbon (HC) and carbon monoxide (CO) emissions were reduced significantly in a hydrogen/diesel dual-fuel PCCI mode with a similar NOx emissions level as that of the diesel PCCI mode.
Technical Paper

Effects of Compression Ratio and Valve Overlap on Feasibility of HCNG Engines for Heavy-Duty Vehicles

2014-04-01
2014-01-1338
To counteract the harmful effects of vehicle emissions on humans and the environment, such as global warming due to greenhouse gases, there is a focus on gaseous fuels as an alternative energy source of transportation. Heavy-duty natural gas vehicles are widely used to improve the air quality of urban areas in Korea because natural gas has the advantage of low greenhouse gas emission levels. However, more in-depth study is required in order for clean fuel vehicles to hold a dominant position over well-developed diesel vehicles. It is difficult to meet reinforced emission standards with only a lean combustion strategy without an aftertreatment system in a lean-burn natural gas engine. Hydrogen-natural gas (HCNG) blends have been proposed as an alternative to improve fuel economy and emissions of lean-burn natural gas engines, since they have a wider flammability range and faster burning speed. HCNG blends could also play a role as a technical bridge for the hydrogen era.
Technical Paper

Assessment of Soot Particles in an Exhaust Gas for Low Temperature Diesel Combustion with High EGR in a Heavy Duty Compression Ignition Engine

2013-10-14
2013-01-2572
The characteristics of soot particles in an exhaust gas for low temperature diesel combustion (LTC) compared with conventional combustion in a compression ignition engine were experimentally investigated by the elemental and thermogravimetric analysis (TGA). Morphology of soot particles was also studied by the transmission electron microscopy (TEM). From the result of the TGA, the water can be evaporated until about 150°C for both combustion regimes. The soot particles for LTC contained more volatile hydrocarbons, which can be easily evaporated from 200°C to 420°C compared with conventional diesel combustion. The soot oxidation for conventional combustion occurs up to 600°C, on the other hand the particles for LTC is oxidized below 520°C. Elemental analysis showed higher oxygen weight fraction resulted from the oxygenated hydrocarbon for the soot particles in LTC. TEM has shown primary particles to be in a diameter range of 20 to 50 nm for conventional diesel combustion.
Technical Paper

Spray and Combustion Visualization of Gasoline and Diesel under Different Ambient Conditions in a Constant Volume Chamber

2013-10-14
2013-01-2547
Spray and combustion of gasoline and diesel were visualized under different ambient conditions in terms of pressure, temperature and density in a constant volume chamber. Three different ambient conditions were selected to simulate the three combustion regimes of homogeneous charge compression ignition, premixed charge compression ignition and conventional combustion. Ambient density was varied from 3.74 to 23.39 kg/m3. Ambient temperature at the spray injection were controlled to the range from 474 to 925 K. Intake oxygen concentration was also modulated from 15 % to 21 % in order to investigate the effects of intake oxygen concentrations on combustion characteristics. The injection pressure of gasoline and diesel were modulated from 50 to 150 MPa to analyze the effect of injection pressure on the spray development and combustion characteristics. Liquid penetration length and vapor penetration length were measured based on the methods of Mie-scattering and Schileren, respectively.
Technical Paper

Effect of Injection Parameters on the Combustion and Emission Characteristics in a Compression Ignition Engine Fuelled with Waste Cooking Oil Biodiesel

2013-10-14
2013-01-2662
An experimental study was conducted to investigate the impact of injection parameters on the combustion and emission characteristics in a compression ignition engine fuelled with neat waste cooking oil (WCO) biodiesel. A single-cylinder diesel engine equipped with common-rail system was used in this research. The test was performed over two engine loads at an engine speed of 800 r/min. Injection timing was varied from −25 to 0 crank angle degree (CAD) after top dead center (aTDC) at two different injection pressures (80 and 160 MPa). Based on in-cylinder pressure, heat release rate was calculated to analyze the combustion characteristics. Carbon monoxide (CO), hydrocarbon (HC), nitrogen oxide (NOx) and smoke were measured to examine the emission characteristics. The results showed that the indicated specific fuel consumption (ISFC) of WCO biodiesel was higher than that of diesel. The ISFC was increased as the injection timing was advanced and injection pressure was increased.
Technical Paper

Effect of Injection Timing Retard on ISI Strategy in Lean-burning LPG Direct Injection Engines

2013-10-14
2013-01-2636
Because of the concerns regarding global warming caused by greenhouse gases and the high cost of fossil fuels, research on improving the fuel economy and emissions in internal combustion engines has become important. Specifically for spark ignition engines, lean-burning direct injection is the most promising technology because the fuel economy and emissions can be improved using a stable combustion of a stratified mixture. This study aimed to develop a spray-guided, lean-burning liquefied petroleum gas (LPG) direct injection engine through optimizing the combustion parameter controls. In previous research, the brake thermal efficiency in an LPG direct injection engine was significantly increased and stable combustion was secured with an interinjection spark ignition (ISI) strategy under low-load operating conditions.
Journal Article

Strategy for Mode Transition between Low Temperature Combustion and Conventional Combustion in a Diesel Engine

2013-09-08
2013-24-0058
Mode transition between low temperature combustion (LTC) and conventional combustion was performed by changing the exhaust gas recirculation (EGR) rate from 60% to 0% or vice versa in a light duty diesel engine. The indicated mean effective pressure (IMEP) before mode transition was set at 0.45 MPa, representing the maximum load of LTC in this research engine. Various engine operating parameters (rate of EGR change, EGR path length, and residual gas) were considered in order to investigate their influence on the combustion mode transition. The characteristics of combustion mode transition were analyzed based on the in-cylinder pressure and hydrocarbon (HC) emission of each cycle. The general results showed that drastic changes of power output, combustion noise, and HC emission occurred during the combustion mode transition due to the improper injection conditions for each combustion mode.
Technical Paper

Knock and Emission Characteristics of Heavy-Duty HCNG Engine with Modified Compression Ratios

2013-04-08
2013-01-0845
Reduction of carbon dioxide (CO₂) emission, which causes global warming, is an important guideline for vehicle engine development. There are two types of methods for reducing the CO₂ emission of a vehicle engine. The first involves improving engine efficiency. The second involves the use of a low-carbon fuel, i.e., fuel with high hydrogen to carbon ratio. Hydrogen-compressed natural gas blend (HCNG) has been researched as a low-carbon fuel. Given that thermal efficiency of an engine cycle increases with its compression ratio (CR), an HCNG engine with high compression ratio not only has high efficiency but also low CO₂ emission. However, unexpected combustion such as knock could occur owing to the increased CR. In this study, we investigated the knock and emission characteristics of an 11-L heavy-duty HCNG engine with a modified CR. A conventional CNG engine was fuelled with HCNG30 (CNG 70 vol% and hydrogen 30 vol%).
Technical Paper

Diesel Knock Visualization and Frequency Analysis of Premixed Charge Compression Ignition Combustion with a Narrow Injection Angle

2013-04-08
2013-01-0906
In this study, premixed charge compression ignition (PCCI) combustion was implemented using an injector that had a narrow injection angle of 70° and a moderately early injection timing of -40° crank angle after top dead center (CA ATDC). In-cylinder pressure measurements and high-speed direct imaging of the flame were performed in an optically accessible single-cylinder diesel engine. Frequency analysis of the acquired in-cylinder pressure data was carried out to obtain the frequency range of diesel knock. Meanwhile, image segmentation and a tracking algorithm based on YCbCr color space were implemented to determine the frequency range of diesel knock from the obtained high-speed image. The results show that the frequency of diesel knock was dominated by the range from 13 kHz to 15 kHz. Still, frequency with low power existed down until 7 kHz. The frequencies of the area movement were shown to be 13 kHz and, in some cases, 8.67 kHz.
Technical Paper

Emission Characteristics of Gasoline and LPG in a Spray-Guided-Type Direct Injection Engine

2013-04-08
2013-01-1323
Nowadays, automobile manufacturers are focusing on reducing exhaust-gas emissions because of their harmful effects on humans and the environment, such as global warming due to greenhouse gases. Direct injection combustion is a promising technology that can significantly improve fuel economy compared to conventional port fuel injection spark ignition engines. However, previous studies indicate that relatively high levels of nitrogen oxide (NOx) emission were produced with gasoline fuel in a spray-guided-type combustion system as a result of the stratified combustion characteristics. Because a lean-burn engine cannot employ a three-way catalyst, NOx emissions can be an obstacle to commercializing a lean-burn direct injection engine. Liquefied petroleum gas (LPG) fuel was proposed as an alternative for reducing NOx emission because it has a higher vapor pressure than gasoline and decreases the local rich mixture region as a result of an improved mixing process.
Technical Paper

Effects of Single and Double Post Injections on Diesel PCCI Combustion

2013-03-25
2013-01-0010
In this study, single and double post injections were applied to diesel premixed charge compression ignition (PCCI) combustion to overcome the drawbacks those are high level of hydrocarbons (HC) and carbon monoxide (CO) emissions in a single-cylinder direct-injection diesel engine. The operating conditions including engine speed and total injection quantity were 1200 rpm and 12 mg/cycle, which are the representative of low engine speed and low load. The main injection timing of diesel PCCI combustion was set to 28 crank angle degree before top dead center (CAD BTDC). This main injection timing showed 32% lower level of nitric oxides (NOx) level and 8 CAD longer ignition delay than those of conventional diesel combustion. However, the levels of HC and CO were 2.7 and 3 times higher than those of conventional diesel combustion due to over-lean mixture and wall wetting of fuel.
Technical Paper

Combustion and Emission Characteristics of Heavy Duty SI Engine Fueled with Synthetic Natural Gas (SNG)

2013-03-25
2013-01-0026
Natural gas produced from coal or biomass is known as synthetic natural gas (SNG), which is expected to replace compressed natural gas (CNG). In this study, we used an 11-l heavy-duty CNG engine in a feasibility study of SNG. SNG, which is composed of 90.95% methane, 6.05% propane, and 3% hydrogen, was produced for the experiment and used as fuel to estimate its effects on combustion and emission characteristics. The torque, fuel flow rate, efficiency, fuel consumption, combustion stability, combustion phase, and emissions characteristics obtained using SNG were compared to those obtained using CNG in an engine speed range of 1,000-2,100 rpm under full load conditions. In addition, an engine fueled with SNG was given an overall evaluation using the World Harmonized Stationary Cycle (WHSC) emission test. The engine's knock characteristic was analyzed at 1,260 rpm under a full load condition. The results showed that there was no difference in power output.
Technical Paper

Operating Characteristics of DME-Gasoline Dual-fuel in a Compression Ignition Engine at the Low Load Condition

2013-03-25
2013-01-0049
Combustion and emission characteristics were investigated in a compression ignition engine with dual-fuel strategy using dimethyl ether (DME) and gasoline. Experiments were performed at the low load condition corresponding to indicated mean effective pressure of 0.45 MPa. DME was directly injected into the cylinder and gasoline was injected into the intake manifold during the intake stroke. The proportion of DME in the total input energy was adjusted from 10% to 100%. DME DME injection timing was widely varied to investigate the effect of injection timing on the combustion phase. Injection pressure of DME was varied from 20 MPa to 60 MPa. Exhaust gas recirculation (EGR) was controlled from 0% to 60% to explore the effect of EGR on the combustion and emission characteristics. As DME proportion was decreased with the increased portion of gasoline, the combustion efficiency was decreased but thermal efficiency was increased.
Technical Paper

The Influence of Fuel Injection Pressure and Intake Pressure on Conventional and Low Temperature Diesel Combustion

2012-09-10
2012-01-1721
The influence of fuel injection pressure and intake pressure on conventional and low temperature diesel combustion was investigated in a light duty diesel engine. The in-cylinder pressure and exhaust emissions were measured and analyzed in each operating condition. The two combustion regimes were classified in terms of intake oxygen concentrations, which were adjusted by varying the amount of exhaust gas recirculation. The fuel injection quantity and injection timing were fixed in order to minimize the influencing factors. Fuel injection pressures of 40 MPa and 120 MPa were used to verify the effect of the fuel injection pressure in both combustion regimes. The injection pressure significantly affected the combustion phase in the low temperature diesel combustion regime due to the longer premixing time relative to the conventional diesel combustion regime.
X