Refine Your Search

Search Results

Viewing 1 to 15 of 15
Technical Paper

Operation of a Compression Ignition Engine with a HEUI Injection System on Natural Gas with Diesel Pilot Injection

1999-10-25
1999-01-3522
Dual fuel engines employing pilot diesel injection to ignite premixed natural gas provide an opportunity for liquid petroleum fuel replacement and for reduced emissions of oxides of nitrogen (NOx) and particulate matter (PM). A Navistar T444E turbocharged V8 engine was converted to operate in dual fuel mode by metering the compressed natural gas (CNG) with an IMPCO Technologies, Inc. regulator and electronic valve while retaining the stock Navistar Hydraulically-Actuated Electronically-Controlled Unit Injection (HEUI) system for diesel pilot injection. A dedicated controller was designed and constructed to allow manual control of diesel fuel injection pulsewidth (FIPW), diesel injection advance (ADV), hydraulic injection control pressure (ICP) and natural gas mass flow. The controller employed two Microchip, Inc. PIC-based microcontrollers: one to perform initialization of a Silicon Systems, Inc. 67F867 engine interface peripheral, and the other to perform the runtime algorithms.
Technical Paper

Neural Network-Based Diesel Engine Emissions Prediction Using In-Cylinder Combustion Pressure

1999-05-03
1999-01-1532
This paper explores the feasibility of using in-cylinder pressure-based variables to predict gaseous exhaust emissions levels from a Navistar T444 direct injection diesel engine through the use of neural networks. The networks were trained using in-cylinder pressure derived variables generated at steady state conditions over a wide speed and load test matrix. The networks were then validated on previously “unseen” real-time data obtained from the Federal Test Procedure cycle through the use of a high speed digital signal processor data acquisition system. Once fully trained, the DSP-based system developed in this work allows the real-time prediction of NOX and CO2 emissions from this engine on a cycle-by-cycle basis without requiring emissions measurement.
Technical Paper

Application of the New City-Suburban Heavy Vehicle Route (CSHVR) to Truck Emissions Characterization

1999-05-03
1999-01-1467
Speed-time and video data were logged for tractor-trailers performing local deliveries in Akron, OH. and Richmond, VA. in order to develop an emissions test schedule that represented real truck use. The data bank developed using these logging techniques was used to create a Yard cycle, a Freeway cycle and a City-Suburban cycle by the concatenation of microtrips. The City-Suburban driving cycle was converted to a driving route, in which the truck under test would perform at maximum acceleration during certain portions of the test schedule. This new route was used to characterize the emissions of a 1982 Ford tractor with a Cummins 14 liter, 350 hp engine and a 1998 International tractor with a Cummins 14 liter, 435 hp engine. Emissions levels were found to be repeatable with one driver and the driver-to-driver variation of NOx was under 4%, although the driver-to-driver variations of CO and PM were higher.
Technical Paper

In-Cylinder Combustion Pressure Characteristics of Fischer-Tropsch and Conventional Diesel Fuels in a Heavy Duty CI Engine

1999-05-03
1999-01-1472
The emissions reduction benefits of Fischer-Tropsch (FT) diesel fuel have been shown in several recent published studies in both engine testing and in-use vehicle testing. FT diesel fuel shows significant advantages in reducing regulated engine emissions over conventional diesel fuel primarily to: its zero sulfur specification, implying reduced particulate matter (PM) emissions, its relatively lower aromaticity, and its relatively high cetane rating. However, the actual effect of FT diesel formulation on the in-cylinder combustion characteristics of unmodified modern heavy-duty diesel engines is not well documented. As a result, a Navistar T444E (V8, 7.3 liter) engine, instrumented for in-cylinder pressure measurement, was installed on an engine dynamometer and subjected to steady-state emissions measurement using both conventional Federal low sulfur pump diesel and a natural gas-derived FT fuel.
Technical Paper

Transient Emissions Comparisons of Alternative Compression Ignition Fuels

1999-03-01
1999-01-1117
The effects of fuel composition on emissions levels from compression ignition engines can be profound, and this understanding has led to mandated reductions in both sulfur and aromatic content of automotive diesel fuels. A Navistar T444E (V8, 7.3 liter) engine was installed on an engine dynamometer and subjected to transient emissions measurement using a variety of fuels, namely federal low sulfur pump diesel; California pump diesel; Malaysian Fischer-Tropsch fuel with very low sulfur and aromatic content; various blends of soy-derived biodiesel; a Fischer-Tropsch fuel with very low sulfur and 10% aromatics; and the same Fischer-Tropsch fuel with 10% isobutanol by volume. The biodiesel blends showed their ability to reduce particulate matter, but at the expense of increasing oxides of nitrogen (NOx), following the simple argument that cetane enhancement led to earlier ignition. However, the Fischer-Tropsch fuels showed their ability to reduce all of the regulated emissions.
Technical Paper

Numerical Prediction of Knock in a Bi-Fuel Engine

1998-10-19
982533
Dedicated natural gas engines suffer the disadvantages of limited vehicle range and relatively few refueling stations. A vehicle capable of operating on either gasoline or natural gas allows alternative fuel usage without sacrificing vehicle range and mobility. However, the bi-fuel engine must be made to provide equal performance on both fuels. Although bi-fuel conversions have existed for a number of years, historically natural gas performance is degraded relative to gasoline due to reduced volumetric efficiency and lower power density of CNG. Much of the performance losses associated with CNG can be overcome by increasing the compression ratio. However, in a bi-fuel application, high compression ratios can result in severe engine knock during gasoline operation. Variable intake valve timing, increased exhaust gas recirculation and retarded ignition timing were explored as a means of controlling knock during gasoline operation of a bi-fuel engine.
Technical Paper

Models for Predicting Transient Heavy Duty Vehicle Emissions

1998-10-19
982652
Heavy duty engine emissions represent a significant portion of the mobile source emissions inventory, especially with respect to oxides of nitrogen (NOx) emissions. West Virginia University (WVU) has developed an extensive database of continuous transient gaseous emission levels from a wide range of heavy duty diesel vehicles in field operation. This database was built using the WVU Transportable Heavy Duty Vehicle Emission Testing Laboratories. Transient driving cycles used to generate the continuous data were the Central Business District cycle (CBD), 5-peak WVU test cycle, WVU 5-mile route, and the New York City Bus cycle (NYCB). This paper discusses continuous emissions data from a transit bus and a tractor truck, each of them powered by a Detroit Diesel 6V-92 engine. Simple correlational models were developed to relate instantaneous emissions to instantaneous power at the drivewheels.
Technical Paper

A Parametric Study of Knock Control Strategies for a Bi-Fuel Engine

1998-02-23
980895
Until a proper fueling infrastructure is established, vehicles powered by natural gas must have bi-fuel capability in order to avoid a limited vehicle range. Although bi-fuel conversions of existing gasoline engines have existed for a number of years, these engines do not fully exploit the combustion and knock properties of both fuels. Much of the power loss resulting from operation of an existing gasoline engine on compressed natural gas (CNG) can be recovered by increasing the compression ratio, thereby exploiting the high knock resistance of natural gas. However, gasoline operation at elevated compression ratios results in severe engine knock. The use of variable intake valve timing in conjunction with ignition timing modulation and electronically controlled exhaust gas recirculation (EGR) was investigated as a means of controlling knock when operating a bi-fuel engine on gasoline at elevated compression ratios.
Technical Paper

Speciation of Hydrocarbon Emissions from a Medium Duty Diesel Engine

1996-02-01
960322
Growing concern over ground-level ozone and its role in smog formation has resulted in extensive investigation into identifying ozone sources. Motor vehicle exhaust, specifically oxides of nitrogen and hydrocarbons, have been identified as major ozone precursors in urban areas. Past research has concentrated on assessing the impact of emissions from gasoline fueled light duty vehicles. However, little work has been done on identifying ozone precursors from medium and heavy duty diesel fueled vehicles. This paper presents the results of testing performed on a Navistar T 444E 190 horsepower diesel engine which is certified as a light/heavy-duty emissions classification and is used in medium duty trucks up to 11,800 kg (26,000 lb) GVW. Regulated emissions and speciated hydrocarbon emissions were collected using a filter, bag and Tenax adsorption cartridges for both steady state and transient engine operation.
Technical Paper

Effect of Fuel Composition on the Operation of a Lean Burn Natural Gas Engine

1995-10-01
952560
With the implementation of a closed loop fuel control system, operation of lean-burn natural gas engines can be optimized in terms of reducing emissions while maximizing efficiency. Such a system would compensate for variations in fuel composition, but also would correct for variations in volumetric efficiency due to immediate engine history and long-term engine component wear. Present day engine controllers perform well when they are operated with the same gas composition for which they were calibrated, but because fuel composition varies geographically as well as seasonally, some method of compensation is required. A closed loop control system on a medium-duty lean-burn engine will enhance performance by maintaining the desired air-fuel ratio to eliminate any unwanted rich or lean excursions (relative to the desired air-fuel ratio) that produce excess engine-out emissions. Such a system can also guard against internal engine damage due to overheating and/or engine knock.
Technical Paper

Exhaust Emissions and Combustion Stability in a Bi-Fuel Spark Ignition Engine

1995-02-01
950468
A Saturn 1.9 liter engine has been converted for operation on either compressed natural gas or gasoline. A bi-fuel controller (BFC) that uses closed-loop control methods for both fuel delivery and spark advance has been developed. The performance and emissions during operation on each fuel have been investigated with the BFC, as well as the performance and emissions with the stock original equipment manufacturer (OEM) controller using gasoline. In-cylinder pressure was measured at a rate of 1024 points per revolution with piezoelectric pressure transducers flush-mounted in the cylinder head. The in-cylinder pressure was used in real time for ignition timing control purposes, and was stored by a data acquisition system for the investigation of engine stability and differences in the combustion properties of the fuels.
Technical Paper

The Design of a Bi-Fuel Engine Which Avoids the Penalties Associated with Natural Gas Operation

1995-02-01
950679
An alternative fuel that has demonstrated considerable potential in reducing emissions and crude oil dependence is compressed natural gas (CNG). A dedicated CNG vehicle suffers from the lack of an adequate number of fueling stations and the poor range limited by CNG storage technology. A vehicle capable of operating on either gasoline or natural gas allows alternative fuel usage without sacrificing vehicle range and mobility. Although many such bi-fuel vehicles are in existence, historically they have employed older engine designs and made compromises in engine control parameters that can degrade performance relative to gasoline and increase emissions. A modern production engine, a 1992 Saturn 1.9 liter 16 valve powerplant, is being optimized for operation on each fuel to realize the full potential of CNG in a bi-fuel system. CNG operation in an engine designed for gasoline typically suffers from reduced power, due in part to displacement of air by gaseous fuel.
Technical Paper

Turbocharging a Bi-Fuel Engine for Performance Equivalent to Gasoline

1994-10-01
942003
A bi-fuel engine capable of operating either on compressed natural gas (CNG) or gasoline is being developed for the transition to alternative fuel usage. A Saturn 1.9 liter 4-cylinder engine was selected as a base powerplant. A control system that allows closed-loop optimization of both fuel delivery and spark timing was developed. Stock performance and emissions of the engine, as well as performance and emissions with the new controller on gasoline and CNG, have been documented. CNG operation in an engine designed for gasoline results in power loss because of the lower volumetric efficiency with gaseous fuel use, yet such an engine does not take advantage of the higher knock resistance of CNG. It is the goal of this research to use the knock resistance of CNG to recover the associated power loss. The two methods considered for this include turbocharging with a variable boost wastegate and raising the compression ratio while employing variable valve timing.
Technical Paper

A Controller for a Spark Ignition Engine with Bi-Fuel Capability

1994-10-01
942004
A bi-fuel engine with the ability to run optimally on both compressed natural gas (CNG) and gasoline is being developed. Such bi-fuel automotive engines are necessary to bridge the gap between gasoline and natural gas as an alternative fuel while natural gas fueling stations are not yet common enough to make a dedicated natural gas vehicle practical. As an example of modern progressive engine design, a Saturn 1.9 liter 4-cylinder dual overhead cam (DOHC) engine has been selected as a base powerplant for this development. Many previous natural gas conversions have made compromises in engine control strategies, including mapped open-loop methods, or resorting to translating the signals to or from the original controller. The engine control system described here, however, employs adaptive closed-loop control, optimizing fuel delivery and spark timing for both fuels.
Technical Paper

Performance of a High Speed Engine with Dual Fuel Capability

1994-03-01
940517
Concern over dwindling oil supplies has led to the adoption of alternate fuels to power fleet vehicles. However, during the interim period when alternate fuel supply stations are few and far between, dual fuel engines prove a necessity. In the light duty arena, these engines are typically gasoline engines modified to accommodate compressed natural gas (CNG) as an alternate fuel, but they are seldom optimized with both fuels in mind. A Saturn 1.9 liter 4 cylinder dual overhead cam engine was selected as a base for developing an optimized gasoline/CNG powerplant. Baseline data on power and steady state emissions (CO2, CO, NOx, HC) were found using the standard Saturn controller. In addition to monitoring standard sensor measurements, real-time pressure traces were taken for up to 256 cycles using a modified head with embedded PCB piezoelectric pressure transducers.
X