Refine Your Search

Topic

Search Results

Standard

Engine Cooling Fan Structural Analysis

2022-02-23
CURRENT
J1390_202202
Three levels of fan structural analysis are included in this practice: a Initial structural integrity. b In-vehicle testing. c Durability (laboratory) test methods. The initial structural integrity section describes analytical and test methods used to predict potential resonance and, therefore, possible fatigue accumulation. The in-vehicle (or machine) section enumerates the general procedure used to conduct a fan strain gage test. Various considerations that may affect the outcome of strain gage data have been described for the user of this procedure to adapt/discard depending on the particular application. The durability test methods section describes the detailed test procedures for a laboratory environment that may be used depending on type of fan, equipment availability, and end objective. The second and third levels build upon information derived from the previous level.
Standard

Oil Cooler Application Testing and Nomenclature

2021-12-13
CURRENT
J1468_202112
This SAE Recommended Practice is applicable to oil-to-air and oil-to-coolant oil coolers installed on mobile or stationary equipment and provides a glossary of oil cooler nomenclature. Such oil coolers may be used for the purpose of cooling automatic transmission fluid, hydraulic system oil, retarder system fluid, engine oil, etc. This document outlines the methods of procuring the test data to determine the operating characteristics of the oil cooling system and the interpretation of the results.
Standard

Charge Air Cooler Internal Cleanliness, Leakage, and Nomenclature

2019-09-05
CURRENT
J1726_201909
This SAE Recommended Practice provides test methods and criteria for evaluating the internal cleanliness and air leakage for engine charge air coolers. This SAE Recommended Practice also provides nomenclature and terminology in common use for engine charge air coolers, related charge air cooling system components, and charge air cooling system operational performance parameters.
Standard

Low-Temperature Coolant Circuit Nomenclature and Applications

2018-11-08
CURRENT
J3136_201811
The document provides clarity related to multiple temperature coolant circuits used in on- and off-highway, gasoline, and light- to heavy-duty diesel engine cooling systems. Out of scope are the terms and definitions of thermal flow control valves used in either low- or high-temperature coolant circuits. This subject is covered in SAE J3142.
Standard

Thermal Flow Control Valve Nomenclature and Application

2018-11-02
CURRENT
J3142_201811
The purpose of this SAE Information Report is to define common industry terminology and nomenclature relative to thermal flow control valves and to describe common thermal flow control valve applications in automotive, highway truck, mobile construction equipment, and industrial applications. This document is primarily directed at internal combustion engine or electric powered applications and the downstream systems to which power is provided, such as transmissions, hydraulics, air compression, etc. The information contained herein does not constitute an SAE Standard.
Standard

Fan Hub Bolt Circles and Pilot Holes

2018-06-02
CURRENT
J635_201806
This Recommended Practice applies to engine cooling fans up to 2000 mm in diameter with a mounting interface consisting of a pilot hole and a circular bolt pattern. Most of these fans are belt, gear, clutch, hydraulically, or electrically driven.
Standard

Engine Cooling Fan Structural Analysis

2017-06-01
HISTORICAL
J1390_201706
Three levels of fan structural analysis are included in this practice: a Initial Structural Integrity b In-vehicle Testing c Durability (Laboratory) Test Methods The Initial Structural Integrity section describes analytical and test methods used to predict potential resonance and, therefore, possible fatigue accumulation. The In-vehicle (or machine) section enumerates the general procedure used to conduct a fan strain gage test. Various considerations that may affect the outcome of strain gage data have been described for the user of this procedure to adapt/discard depending on the particular application. The Durability Test Methods section describes the detailed test procedures for a laboratory environment that may be used depending on type of fan, equipment availability, and end objective. The second and third levels build upon information derived from the previous level.
Standard

Oil Cooler Application Testing and Nomenclature

2017-03-21
HISTORICAL
J1468_201703
This SAE Recommended Practice is applicable to oil-to-air and oil-to-coolant oil coolers installed on mobile or stationary equipment and provides a glossary of oil cooler nomenclature. Such oil coolers may be used for the purpose of cooling automatic transmission fluid, hydraulic system oil, retarder system fluid, engine oil, etc. This document outlines the methods of procuring the test data to determine the operating characteristics of the oil cooling system and the interpretation of the results.
Standard

Charge Air Cooler Internal Cleanliness, Leakage, and Nomenclature

2015-07-01
HISTORICAL
J1726_201507
This SAE Recommended Practice provides test methods and criteria for evaluating the internal cleanliness and air leakage for engine charge air coolers. This SAE Recommended Practice also provides nomenclature and terminology in common use for engine charge air coolers, related charge air cooling system components, and charge air cooling system operational performance parameters.
Standard

Fan Hub Bolt Circles and Pilot Holes

2014-03-12
HISTORICAL
J635_201403
This Recommended Practice applies to engine cooling fans up to 2000 mm in diameter with a mounting interface consisting of a pilot hole and a circular bolt pattern. Most of these fans are belt, gear, clutch, hydraulically, or electrically driven.
Standard

Engine Cooling Fan Structural Analysis

2012-01-09
HISTORICAL
J1390_201201
Three levels of fan structural analysis are included in this practice: 1 Initial Structural Integrity 2 In-vehicle Testing 3 Durability Test Methods The Initial Structural Integrity section describes analytical and test methods used to predict potential resonance and, therefore, possible fatigue accumulation. The In-vehicle (or machine) section enumerates the general procedure used to conduct a fan strain gage test. Various considerations that may affect the outcome of strain gage data have been described for the user of this procedure to adapt/discard depending on the particular application. The Durability Test Methods section describes the detailed test procedures that may be used depending on type of fan, equipment availability, and end objective. Each of the previous levels builds upon information derived from the previous level. Engineering judgment is required as to the applicability of each level to a different vehicle environment or a new fan design.
Standard

Oil Cooler Application Testing and Nomenclature

2010-10-01
HISTORICAL
J1468_201010
This SAE Recommended Practice is applicable to oil-to-air and oil-to-water oil coolers installed on mobile or stationary equipment and provides a glossary of oil cooler nomenclature. Such oil coolers may be used for the purpose of cooling automatic transmission fluid, hydraulic system oil, retarder system fluid, etc. This document outlines the methods of procuring the test data to determine the operating characteristics of the oil cooling system and the interpretation of the results.
Standard

Charge Air Cooler Internal Cleanliness, Leakage, and Nomenclature

2010-02-15
HISTORICAL
J1726_201002
This SAE Recommended Practice provides test methods and criteria for evaluating the internal cleanliness and air leakage. This SAE Recommended Practice also provides nomenclature and terminology in common use for engine charge air coolers, related charge air cooling system components, and charge air cooling system operational performance parameters.
Standard

Heavy-Duty Nonmetallic Engine Cooling Fans—Material, Manufacturing, and Test Considerations

2009-12-14
HISTORICAL
J1474_200912
The following topics are included in this report: Section 2—References Section 3—Definitions Section 4—Material Selection Section 5—Production Considerations Section 6—Initial Structural Integrity Section 7—In-Vehicle Testing Section 8—Laboratory Testing The Material Selection section lists environmental factors and material properties which should be considered when determining appropriate fan material(s) for a given application. The Production Considerations section covers various aspects of machine selection, mold design, and process control. The Initial Structural Integrity section lists factors which should be considered in addition to those covered by the same section of SAE J1390. The In-Vehicle Testing section lists factors which should be considered in addition to those covered by the same section of SAE J1390.
Standard

Fan Hub Bolt Circles and Pilot Holes

2008-11-14
HISTORICAL
J635_200811
This Recommended Practice applies to engine cooling fans up to 2000 mm in diameter with a mounting interface consisting of a pilot hole and a circular bolt pattern. Most of these fans are belt, gear, clutch, hydraulically, or electrically driven.
Standard

Application Testing of Oil-to-Air Oil Coolers for Heat Transfer Performance

2006-04-17
HISTORICAL
J1468_200604
This SAE Recommended Practice is applicable to oil-to-air oil coolers installed on mobile or stationary equipment. Such oil coolers may be used for the purpose of cooling automatic transmission fluid, hydraulic system oil, retarder system fluid, etc. This document outlines the methods of procuring the test data to determine the operating characteristics of the oil cooling system and the interpretation of the results. For information regarding application testing of oil-to-water oil coolers for heat transfer performance, see SAE J2414.
Standard

Application Testing of Oil-to-Water Oil Coolers for Heat Transfer Performance

2005-06-21
HISTORICAL
J2414_200506
This SAE Recommended Practice is applicable to oil-to-water oil coolers installed on mobile or stationary equipment. Such oil coolers may be used for the purpose of cooling automatic transmission fluid, hydraulic system oil, retarder system fluid, etc. This document outlines the methods of procuring the test data to determine the operating characteristics of the oil cooling system and the interpretation of the results. For information regarding application testing of oil-to-air oil coolers for heat transfer performance, see SAE J1468.
Standard

Heavy-Duty Nonmetallic Engine Cooling Fans—Material, Manufacturing, and Test Considerations

2003-04-25
HISTORICAL
J1474_200304
The following topics are included in this report: Section 2—References Section 3—Definitions Section 4—Material Selection Section 5—Production Considerations Section 6—Initial Structural Integrity Section 7—In-Vehicle Testing Section 8—Laboratory Testing The Material Selection section lists environmental factors and material properties which should be considered when determining appropriate fan material(s) for a given application. The Production Considerations section covers various aspects of machine selection, mold design, and process control. The Initial Structural Integrity section lists factors which should be considered in addition to those covered by Section 3 of SAE J1390. The In-Vehicle Testing section lists factors which should be considered in addition to those covered by Section 4 of SAE J1390.
Standard

Engine Cooling Fan Structural Analysis

2003-04-24
HISTORICAL
J1390_200304
Three levels of fan structural analysis are included in this practice: 1 Initial Structural Integrity 2 In-vehicle Testing 3 Durability Test Methods The Initial Structural Integrity section describes analytical and test methods used to predict potential resonance and, therefore, possible fatigue accumulation. The In-vehicle (or machine) section enumerates the general procedure used to conduct a fan strain gage test. Various considerations that may affect the outcome of strain gage data have been described for the user of this procedure to adapt/discard depending on the particular application. The Durability Test Methods section describes the detailed test procedures that may be used depending on type of fan, equipment availability, and end objective. Each of the previous levels builds upon information derived from the previous level. Engineering judgment is required as to the applicability of each level to a different vehicle environment or a new fan design.
Standard

Application Testing of Oil-to-Air Oil Coolers for Heat Transfer Performance

1999-05-26
HISTORICAL
J1468_199905
This SAE Recommended Practice is applicable to oil-to-air oil coolers installed on mobile or stationary equipment. Such oil coolers may be used for the purpose of cooling automatic transmission fluid, hydraulic system oil, retarder system fluid, etc. This document outlines the methods of procuring the test data to determine the operating characteristics of the oil cooling system and the interpretation of the results. For information regarding application testing of oil-to-water oil coolers for heat transfer performance, see SAE J2414.
X