Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Inertia Tensor and Center of Gravity Measurement for Engines and Other Automotive Components

A machine has been developed to measure the complete inertia matrix; mass, center of gravity (CG) location, and all moments and products of inertia. Among other things these quantities are useful in studying engine vibrations, calculation of the torque roll axis, and in the placement of engine mounts. While the machine was developed primarily for engines it can be used for other objects of similar size and weight, and even smaller objects such as tires and wheels/rims. A key feature of the device is that the object, once placed on the test table, is never reoriented during the test cycle. This reduces the testing time to an hour or less, with the setup time being a few minutes to a few hours depending on the complexity of the shape of the object. Other inertia test methods can require up to five reorientations, separate CG measurement, and up to several days for a complete test.
Journal Article

Design Challenges in the Development of a Large Vehicle Inertial Measurement System

The (Vehicle Inertia Parameter Evaluation Rig) VIPER II is a full vehicle mass and inertia parameter measurement machine. The VIPER II expands upon the capabilities of its predecessor and is capable of measuring vehicles with a mass of up to 45,360 kg (100,000 lb), an increase in capacity of 18,100 kg (40,000 lb). The VIPER II also exceeds its predecessor in both the length and width of vehicles it can measure. The VIPER II's maximum vehicle width is 381 cm (150 in) an increase of 76 cm (30 in) and maximum distance from the vehicle CG to the outer most axle is 648 cm (255 in) an additional 152 cm (60 in) The VIPER II is capable of performing measurements including vehicle CG height, pitch, roll, and yaw moments of inertia and the roll/yaw cross product of inertia. While being able to measure both heavier and larger vehicles, the VIPER II is designed to maintain a maximum error of 3% for all inertia measurements and 1% for CG height.
Technical Paper

Validation and Enhancement of a Heavy Truck Simulation Model with an Electronic Stability Control Model

Validation was performed on an existing heavy truck vehicle dynamics computer model with roll stability control (RSC). The first stage in this validation was to compare the response of the simulated tractor to that of the experimental tractor. By looking at the steady-state gains of the tractor, adjustments were made to the model to more closely match the experimental results. These adjustments included suspension and steering compliances, as well as auxiliary roll moment modifications. Once the validation of the truck tractor was completed for the current configuration, the existing 53-foot box trailer model was added to the vehicle model. The next stage in experimental validation for the current tractor-trailer model was to incorporate suspension compliances and modify the auxiliary roll stiffness to more closely model the experimental response of the vehicle. The final validation stage was to implement some minor modifications to the existing RSC model.
Journal Article

Integration of a Torsional Stiffness Model into an Existing Heavy Truck Vehicle Dynamics Model

Torsional stiffness properties were developed for both a 53-foot box trailer and a 28-foot flatbed control trailer based on experimental measurements. In order to study the effect of torsional stiffness on the dynamics of a heavy truck vehicle dynamics computer model, static maneuvers were conducted comparing different torsional stiffness values to the original rigid vehicle model. Stiffness properties were first developed for a truck tractor model. It was found that the incorporation of a torsional stiffness model had only a minor effect on the overall tractor response for steady-state maneuvers up to 0.4 g lateral acceleration. The effect of torsional stiffness was also studied for the trailer portion of the existing model.
Technical Paper

Enhancement of Vehicle Dynamics Model Using Genetic Algorithm and Estimation Theory

A determination of the vehicle states and tire forces is critical to the stability of vehicle dynamic behavior and to designing automotive control systems. Researchers have studied estimation methods for the vehicle state vectors and tire forces. However, the accuracy of the estimation methods is closely related to the employed model. In this paper, tire lag dynamics is introduced in the model. Also application of estimation methods in order to improve the model accuracy is presented. The model is developed by using the global searching algorithm, a Genetic Algorithm, so that the model can be used in the nonlinear range. The extended Kalman filter and sliding mode observer theory are applied to estimate the vehicle state vectors and tire forces. The obtained results are compared with measurements and the outputs from the ADAMS full vehicle model. [15]
Technical Paper

Inertia Measurements of Large Military Vehicles

This paper describes the design and operation of a facility for measuring vehicle center-of-gravity height; roll, pitch, and yaw moments of inertia; and roll/yaw cross product of inertia for a broad range of test specimens. The facility is configurable such that it is capable of measuring these properties for light, single axle trailers; long, heavy vehicles; and tank turrets. The design was driven by the need for accurate, repeatable measurement results and the desire to have a single facility capable of making measurements on a broad range of vehicle sizes.