Refine Your Search

Topic

Author

Search Results

Technical Paper

High Power Discharge Combustion Effects on Fuel Consumption, Emissions, and Catalyst Heating

2014-10-13
2014-01-2626
A key element to achieving vehicle emission certification for most light-duty vehicles using spark-ignition engine technology is prompt catalyst warming. Emission mitigation largely does not occur while the catalyst is below its “light-off temperature”, which takes a certain time to achieve when the engine starts from a cold condition. If the catalyst takes too long to light-off, the vehicle could fail its emission certification; it is necessary to minimize the catalyst warm up period to mitigate emissions as quickly as possible. One technique used to minimize catalyst warm up is to calibrate the engine in such a way that it delivers high temperature exhaust. At idle or low speed/low-load conditions, this can be done by retarding spark timing with a corresponding increase in fuel flow rate and / or leaning the mixture. Both approaches, however, encounter limits as combustion stability degrades and / or nitrogen oxide emissions rise excessively.
Journal Article

Low Temperature Heat Release of Palm and Soy Biodiesel in Late Injection Low Temperature Combustion

2014-04-01
2014-01-1381
The first stage of ignition in saturated hydrocarbon fuels is characterized as low temperature heat release (LTHR) or cool flame combustion. LTHR takes place as a series of isomerization reactions at temperatures from 600K to 900K, and is often detectable in HCCI, rapid compression machines, and early injection low temperature combustion (LTC). The experimental investigation presented attempts to determine the behavior of LTHR in late injection low temperature combustion in a medium duty diesel as fuel varies and the influence of such behavior on LTC torque and emissions.
Technical Paper

The Effects of CO, H2, and C3H6 on the SCR Reactions of an Fe Zeolite SCR Catalyst

2013-04-08
2013-01-1062
Selective Catalytic Reduction (SCR) catalysts used in Lean NOx Trap (LNT) - SCR exhaust aftertreatment systems typically encounter alternating oxidizing and reducing environments. Reducing conditions occur when diesel fuel is injected upstream of a reformer catalyst, generating high concentrations of hydrogen (H₂), carbon monoxide (CO), and hydrocarbons to deNOx the LNT. In this study, the functionality of an iron (Fe) zeolite SCR catalyst is explored with a bench top reactor during steady-state and cyclic transient SCR operation. Experiments to characterize the effect of an LNT deNOx event on SCR operation show that adding H₂ or CO only slightly changes SCR behavior with the primary contribution being an enhancement of nitrogen dioxide (NO₂) decomposition into nitric oxide (NO). Exposure of the catalyst to C₃H₆ (a surrogate for an actual exhaust HC mixture) leads to a significant decrease in NOx reduction capabilities of the catalyst.
Technical Paper

Optical and Infrared In-Situ Measurements of EGR Cooler Fouling

2013-04-08
2013-01-1289
The use of exhaust gas recirculation (EGR) in internal combustion engines has significant impacts on combustion and emissions. EGR can be used to reduce in-cylinder NOx production, reduce emitted particulate matter, and enable advanced forms of combustion. To maximize the benefits of EGR, the exhaust gases are often cooled with on-engine liquid to gas heat exchangers. A common problem with this approach is the build-up of a fouling layer inside the heat exchanger due to thermophoresis and condensation, reducing the effectiveness of the heat exchanger in lowering gas temperatures. Literature has shown the effectiveness to initially drop rapidly and then approach steady state after a variable amount of time. The asymptotic behavior of the effectiveness has not been well explained. A range of theories have been proposed including fouling layer removal, changing fouling layer properties, and cessation of thermophoresis.
Technical Paper

Improvement in Spark-Ignition Engine Fuel Consumption and Cyclic Variability with Pulsed Energy Spark Plug

2012-04-16
2012-01-1151
Conventional spark plugs ignite a fuel-air mixture via an electric-to-plasma energy transfer; the effectiveness of which can be described by an electric-to-plasma energy efficiency. Although conventional spark plug electric-to-plasma efficiencies have historically been viewed as adequate, it might be wondered how an increase in such an efficiency might translate (if at all) to improvements in the flame initiation period and eventual engine performance of a spark-ignition engine. A modification can be made to the spark plug that places a peaking capacitor in the path of the electrical current; upon coil energizing, the stored energy in the peaking capacitor substantially increases the energy delivered by the spark. A previous study has observed an improvement in the electric-to-plasma energy efficiency to around 50%, whereas the same study observed conventional spark plug electric-to-plasma energy efficiency to remain around 1%.
Technical Paper

A Visualization Test Setup for Investigation of Water-Deposit Interaction in a Surrogate Rectangular Cooler Exposed to Diesel Exhaust Flow

2012-04-16
2012-01-0364
Exhaust gas recirculation (EGR) coolers are commonly used in diesel engines to reduce the temperature of recirculated exhaust gases in order to reduce NOx emissions. The presence of a cool surface in the hot exhaust causes particulate soot deposition as well as hydrocarbon and water condensation. Fouling experienced through deposition of particulate matter and hydrocarbons results in degraded cooler effectiveness and increased pressure drop. In this study, a visualization test setup is designed and constructed so that the effect of water condensation on the deposit formation and growth at various coolant temperatures can be studied. A water-cooled surrogate rectangular channel is employed to represent the EGR cooler. One side of the channel is made of glass for visualization purposes. A medium duty diesel engine is used to generate the exhaust stream.
Technical Paper

Biodiesel Later-Phased Low Temperature Combustion Ignition and Burn Rate Behavior on Engine Torque

2012-04-16
2012-01-1305
Finding a replacement for fossil fuels is critical for the future of automotive transportation. The compression ignition (CI) engine is an important aspect of everyday life by means of transportation and shipping of materials. Biodiesel is a viable augmentation for conventional diesel fuel in compression ignition engines. Biodiesel-fuelled diesel engines produce less particulate matter (PM) relative to conventional diesel and biodiesel has the ability to be a carbon dioxide (CO₂) neutral fuel, which may come under government regulation as a greenhouse gas. Although biodiesel is a viable diesel replacement and has certain emissions benefits, it typically also has a known characteristic of higher oxides of nitrogen (NOx) emissions relative to petroleum diesel. Advanced modes of combustion such as low temperature combustion (LTC) have attained much attention due to ever-increasing emission standards, and could also help reduce NOx in biodiesel.
Journal Article

Evaluation of Diesel Oxidation Catalyst Conversion of Hydrocarbons and Particulate Matter from Premixed Low Temperature Combustion of Biodiesel

2011-04-12
2011-01-1186
Premixed low temperature combustion (LTC) in diesel engines simultaneously reduces soot and NOx at the expense of increased hydrocarbon (HC) and CO emissions. The use of biodiesel in the LTC regime has been shown to produce lower HC emissions than petroleum diesel; however, unburned methyl esters from biodiesel are more susceptible to particulate matter (PM) formation following atmospheric dilution due to their low volatility. In this study, the efficacy of a production-type diesel oxidation catalyst (DOC) for the conversion of light hydrocarbons species and heavier, semi-volatile species like those in unburned fuel is examined. Experimental data were taken from a high speed direct-injection diesel engine operating in a mid-load, late injection partially premixed LTC mode on ultra-low sulfur diesel (ULSD) and neat soy-based biodiesel (B100). Gaseous emissions were recorded using a conventional suite of analyzers and individual light HCs were measured using an FT-IR analyzer.
Technical Paper

Characterizing the Influence of EGR and Fuel Pressure on the Emissions in Low Temperature Diesel Combustion

2011-04-12
2011-01-1354
In the wake of global focus shifting towards the health and conservation of the planet, greater importance is placed upon the hazardous emissions of our fossil fuels, as well as their finite supply. These two areas remain intense topics of research in order to reduce greenhouse gas emissions and increase the fuel efficiency of vehicles, a sector which is a major contributor to society's global CO₂ emissions and consumer of fossil-fuel resources. A particular solution to this problem is the diesel engine, with its inherently fuel-lean combustion, which gives rise to low CO₂ production and higher efficiencies than other potential powertrain solutions. Diesel engines, however, typically exhibit higher nitrogen oxides (NOx) and soot engine-out emissions than their gasoline counterparts. NOx is an ingredient to ground-level ozone production and smoke is a possible carcinogen, both of which are facing stricter emissions regulations.
Technical Paper

Heat Release Parameters to Assess Low Temperature Combustion Attainment

2011-04-12
2011-01-1350
Internal combustion engines have dealt with increasingly restricted emissions requirements. After-treatment devices are successful bringing emissions into compliance, but in-cylinder combustion control can reduce their burden by reducing engine-out emissions. For example, oxides of nitrogen (NOx) are diesel combustion exhaust species of notoriety for their difficulty in after-treatment removal. In-cylinder conditions can be controlled for low levels of NOx, but this produces high levels of soot particulate matter (PM). The simultaneous reduction of NOx and PM can be realized through a combustion process known as low temperature combustion (LTC). This paper presents an investigation into the manifestation of LTC in the calculated heat release profile. Such a study could be important since some extreme LTC conditions may exhibit a return to the soot-NOx tradeoff, rendering an emissions-based definition of LTC unhelpful.
Technical Paper

Turbulence Intensity Calculation from Cylinder Pressure Data in a High Degree of Freedom Spark-Ignition Engine

2010-04-12
2010-01-0175
The number of control actuators available on spark-ignition engines is rapidly increasing to meet demand for improved fuel economy and reduced exhaust emissions. The added complexity greatly complicates control strategy development because there can be a wide range of potential actuator settings at each engine operating condition, and map-based actuator calibration becomes challenging as the number of control degrees of freedom expand significantly. Many engine actuators, such as variable valve actuation and flow control valves, directly influence in-cylinder combustion through changes in gas exchange, mixture preparation, and charge motion. The addition of these types of actuators makes it difficult to predict the influences of individual actuator positioning on in-cylinder combustion without substantial experimental complexity.
Journal Article

Review of Soot Deposition and Removal Mechanisms in EGR Coolers

2010-04-12
2010-01-1211
Exhaust gas recirculation (EGR) coolers are commonly used in diesel engines to reduce the temperature of recirculated exhaust gases in order to reduce NOX emissions. Engine coolant is used to cool EGR coolers. The presence of a cold surface in the cooler causes fouling due to particulate soot deposition, condensation of hydrocarbon, water and acid. Fouling experience results in cooler effectiveness loss and pressure drop. In this study, possible soot deposition mechanisms are discussed and their orders of magnitude are compared. Also, probable removal mechanisms of soot particles are studied by calculating the forces acting on a single particle attached to the wall or deposited layer. Our analysis shows that thermophoresis in the dominant mechanism for soot deposition in EGR coolers and high surface temperature and high kinetic energy of soot particles at the gas-deposit interface can be the critical factor in particles removal.
Technical Paper

Biodiesel Imposed System Responses in a Medium-Duty Diesel Engine

2010-04-12
2010-01-0565
The often-observed differences in nitrogen oxides, or NOx, emissions between biodiesel and petroleum diesel fuels in diesel engines remain intense topics of research. In several instances, biodiesel-fuelled engines have higher NOx emissions than petroleum-fuelled engines; a situation often referred to as the "biodiesel NOx penalty." The literature is rich with investigations that reveal many fundamental mechanisms which contribute to (in varying and often inverse ways) the manifestation of differences in NOx emissions; these mechanisms include, for example, differences in ignition delay, changes to in-cylinder radiation heat transfer, and unequal heating values between the fuels. In addition to fundamental mechanisms, however, are the effects of "system-response" issues.
Technical Paper

Computational Investigation of the Stratification Effects on DI/HCCI Engine Combustion at Low Load Conditions

2009-11-02
2009-01-2703
A numerical study has been conducted to investigate possible extension of the low load limit of the HCCI operating range by charge stratification using direct injection. A wide range of SOI timings at a low load HCCI engine operating condition were numerically examined to investigate the effect of DI. A multidimensional CFD code KIVA3v with a turbulent combustion model based on a modified flamelet approach was used for the numerical study. The CFD code was validated against experimental data by comparing pressure traces at different SOI’s. A parametric study on the effect of SOI on combustion has been carried out using the validated code. Two parameters, the combustion efficiency and CO emissions, were chosen to examine the effect of SOI on combustion, which showed good agreement between numerical results and experiments. Analysis of the in-cylinder flow field was carried out to identify the source of CO emissions at various SOI’s.
Journal Article

Modeling of Thermophoretic Soot Deposition and Hydrocarbon Condensation in EGR Coolers

2009-06-15
2009-01-1939
EGR coolers are effective to reduce NOx emissions from diesel engines due to lower intake charge temperature. EGR cooler fouling reduces heat transfer capacity of the cooler significantly and increases pressure drop across the cooler. Engine coolant provided at 40–90 C is used to cool EGR coolers. The presence of a cold surface in the cooler causes particulate soot deposition and hydrocarbon condensation. The experimental data also indicates that the fouling is mainly caused by soot and hydrocarbons. In this study, a 1-D model is extended to simulate particulate soot and hydrocarbon deposition on a concentric tube EGR cooler with a constant wall temperature. The soot deposition caused by thermophoresis phenomena is taken into account the model. Condensation of a wide range of hydrocarbon molecules are also modeled but the results show condensation of only heavy molecules at coolant temperature.
Journal Article

Premixed Low Temperature Combustion of Biodiesel and Blends in a High Speed Compression Ignition Engine

2009-04-20
2009-01-0133
The effects of combining premixed, low temperature combustion (LTC) with biodiesel are relatively unknown to this point. This mode allows simultaneously low soot and NOx emissions by using high rates of EGR and increasing ignition delay. This paper compares engine performance and emissions of neat, soy-based methyl ester biodiesel (B100), B20, B50, pure ultra low sulfur diesel (ULSD) and a Swedish, low aromatic diesel in a multi-cylinder diesel engine operating in a late-injection premixed LTC mode. Using heat release analysis, the progression of LTC combustion was explored by comparing fuel mass fraction burned. B100 had a comparatively long ignition delay compared with Swedish diesel when measured by start of ignition (SOI) to 10% fuel mass fraction burned (CA10). Differences were not as apparent when measured by SOI to start of combustion (SOC) even though their cetane numbers are comparable.
Technical Paper

Numerical Modeling and Experimental Investigations of EGR Cooler Fouling in a Diesel Engine

2009-04-20
2009-01-1506
EGR coolers are mainly used on diesel engines to reduce intake charge temperature and thus reduce emissions of NOx and PM. Soot and hydrocarbon deposition in the EGR cooler reduces heat transfer efficiency of the cooler and increases emissions and pressure drop across the cooler. They may also be acidic and corrosive. Fouling has been always treated as an approximate factor in heat exchanger designs and it has not been modeled in detail. The aim of this paper is to look into fouling formation in an EGR cooler of a diesel engine. A 1-D model is developed to predict and calculate EGR cooler fouling amount and distribution across a concentric tube heat exchanger with a constant wall temperature. The model is compared to an experiment that is designed for correlation of the model. Effectiveness, mass deposition, and pressure drop are the parameters that have been compared. The results of the model are in a good agreement with the experimental data.
Journal Article

Hydrocarbons and Particulate Matter in EGR Cooler Deposits: Effects of Gas Flow Rate, Coolant Temperature, and Oxidation Catalyst

2008-10-06
2008-01-2467
Compact heat exchangers are commonly used in diesel engines to reduce the temperature of recirculated exhaust gases, resulting in decreased NOx emissions. These exhaust gas recirculation (EGR) coolers experience fouling through deposition of particulate matter (PM) and hydrocarbons (HCs) that reduces the effectiveness of the cooler. Surrogate tubes have been used to investigate the impacts of gas flow rate and coolant temperature on the deposition of PM and HCs. The results indicate that mass deposition is lowest at high flow rates and high coolant temperatures. An oxidation catalyst was investigated and proved to effectively reduce deposition of HCs, but did not reduce overall mass deposition to near-zero levels. Speciation of the deposit HCs showed that a range of HCs from C15 - C25 were deposited and retained in the surrogate tubes.
Journal Article

Diesel EGR Cooler Fouling

2008-10-06
2008-01-2475
The buildup of deposits in EGR coolers causes significant degradation in heat transfer performance, often on the order of 20-30%. Deposits also increase pressure drop across coolers and thus may degrade engine efficiency under some operating conditions. It is unlikely that EGR cooler deposits can be prevented from forming when soot and HC are present. The presence of cooled surfaces will cause thermophoretic soot deposition and condensation of HC and acids. While this can be affected by engine calibration, it probably cannot be eliminated as long as cooled EGR is required for emission control. It is generally felt that “dry fluffy” soot is less likely to cause major fouling than “heavy wet” soot. An oxidation catalyst in the EGR line can remove HC and has been shown to reduce fouling in some applications. The combination of an oxidation catalyst and a wall-flow filter largely eliminates fouling. Various EGR cooler designs affect details of deposit formation.
Technical Paper

Simultaneous Reduction of NOX and Soot in a Heavy-Duty Diesel Engine by Instantaneous Mixing of Fuel and Water

2007-04-16
2007-01-0125
Meeting diesel engine emission standards for heavy-duty vehicles can be achieved by simultaneous injection of fuel and water. An injection system for instantaneous mixing of fuel and water in the combustion chamber has been developed by injecting water in a mixing passage located in the periphery of the fuel spray. The fuel spray is then entrained by water and hot air before it burns. The experimental work was carried out on a Rapid Compression Machine and on a Komatsu direct-injection heavy-duty diesel engine with a high pressure common rail fuel injection system. It was also supported by Computational Fluid Dynamics simulations of the injection and combustion processes in order to evaluate the effect of water vapor distribution on cylinder temperature and NOX formation. It has been concluded that when the water injection is appropriately timed, the combustion speed is slower and the cylinder temperature lower than in conventional diesel combustion.
X