Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Effects of the Domain Zonal Decomposition on the Hybrid URANS/LES Modeling of the TCC-III Motored Engine Flow

2019-09-09
2019-24-0097
Hybrid URANS/LES turbulence modeling is rapidly emerging as a valuable complement to standard LES for full-engine multi-cycle simulation. Among the available approaches, zonal hybrids are potentially attractive due to the possibility of clearly identify URANS and LES zones, eventually introducing further zone types with dynamically switching behavior. The present work aims at evaluating the impact of different zonal configurations on the simulated flow statistics using the well-assessed TCC-III experimental engine setup. More specifically, different methods (URANS, LES or seamless DES) are applied inside the cylinder volume, as well as into the intake/exhaust ports and plenums. For each of the five tested configurations, in-cylinder flow features are compared against the reference TCC-III experimental measurements, in terms of ensemble-averaged, RMS fields and flow alignment.
Technical Paper

Impact of Grid Density on the LES Analysis of Flow CCV: Application to the TCC-III Engine under Motored Conditions

2018-04-03
2018-01-0203
Large-eddy simulation (LES) applications for internal combustion engine (ICE) flows are constantly growing due to the increase of computing resources and the availability of suitable CFD codes, methods and practices. The LES superior capability for modeling spatial and temporal evolution of turbulent flow structures with reference to RANS makes it a promising tool for describing, and possibly motivating, ICE cycle-to-cycle variability (CCV) and cycle-resolved events such as knock and misfire. Despite the growing interest towards LES in the academic community, applications to ICE flows are still limited. One of the reasons for such discrepancy is the uncertainty in the estimation of the LES computational cost. This in turn is mainly dependent on grid density, the CFD domain extent, the time step size and the overall number of cycles to be run. Grid density is directly linked to the possibility of reducing modeling assumptions for sub-grid scales.
Technical Paper

Improving Acoustic Performance of an Air Filter Box. TL Analysis and Device Optimization

2016-06-15
2016-01-1813
The characteristics of the intake system affect both engine power output and gas-dynamic noise emissions. The latter is particularly true in downsized VVA engines, where a less effective attenuation of the pressure waves is realized, due to the intake line de-throttling at part-load. For this engine architecture, a refined air-box design is hence requested. In this work, the Transmission Loss (TL) of the intake air-box of a commercial VVA engine is numerically computed through a 3D FEM approach. Results are compared with experimental data, showing a very good correlation. The validated model is then coupled to an external optimizer (ModeFRONTIERTM) to increase the TL parameter in a prefixed frequency range. The improvement of the acoustic attenuation is attained through a shape deformation of the inner structure of the base device, taking into account constraints related to the device installation inside the engine bay.
Journal Article

A RANS-Based CFD Model to Predict the Statistical Occurrence of Knock in Spark-Ignition Engines

2016-04-05
2016-01-0581
Engine knock is emerging as the main limiting factor for modern spark-ignition (SI) engines, facing increasing thermal loads and seeking demanding efficiency targets. To fulfill these requirements, the engine operating point must be moved as close as possible to the onset of abnormal combustion events. The turbulent regime characterizing in-cylinder flows and SI combustion leads to serious fluctuations between consecutive engine cycles. This forces the engine designer to further distance the target condition from its theoretical optimum, in order to prevent abnormal combustion to severely damage the engine components just because of few individual heavy-knocking cycles. A RANS-based model is presented in this study, which is able to predict not only the ensemble average knock occurrence but also a knock probability. This improves the knock tendency characterization, since the mean knock onset alone is a poorly meaningful indication in a stochastic event such as engine knock.
Journal Article

Knock and Cycle by Cycle Analysis of a High Performance V12 Spark Ignition Engine. Part 1: Experimental Data and Correlations Assessment

2015-09-06
2015-24-2392
In this paper, a high performance V12 spark-ignition engine is experimentally investigated at test-bench in order to fully characterize its behavior in terms of both average parameters, cycle-by-cycle variations and knock tendency, for different operating conditions. In particular, for each considered operating point, a spark advance sweep is actuated, starting from a knock-free calibration, up to intense knock operation. Sequences of 300 consecutive pressure cycles are measured for each cylinder, together with the main overall engine performance, including fuel flow, torque, and fuel consumption. Acquired data are statistically analyzed to derive the distributions of main indicated parameters, in order to find proper correlations with ensemble-averaged quantities. In particular, the Coefficient of Variation (CoV) of IMEP and of the in-cylinder peak pressure (pmax) are correlated to the average combustion phasing and duration (MFB50 and Δθb), with a good coefficient of determination.
Journal Article

Knock Detection Based on MAPO Analysis, AR Model and Discrete Wavelet Transform Applied to the In-Cylinder Pressure Data: Results and Comparison

2014-10-13
2014-01-2547
The easiest way to identify knock conditions during the operation of a SI engine is represented by the knowledge of the in-cylinder pressure. Traditional techniques like MAPO (Maximum Amplitude Pressure Oscillation) based method rely on the frequency domain processing of the pressure data. This technique may present uncertainties due to the correct specification of some model parameters, like the band-pass frequency range and the crank angle window of interest. In this paper two innovative techniques for knock detection, which make use of the in-cylinder pressure, are explained in detail, and the results are compared with those coming from the MAPO method. The first procedure is based on the use of statistical analysis by applying an Auto Regressive (AR) technique, while the second technique makes use of the Discrete Wavelet Transform (DWT). The data useful for the analysis have been acquired on a high compression ratio four cylinder, spark ignition engine.
Technical Paper

Analysis and Design of an Intake Filter Box for a Downsized VVA Engine

2014-04-01
2014-01-1693
The present paper reports 1D and 3D CFD analyses of the air-filter box of a turbocharged VVA engine, aiming to predict and improve the gas-dynamic noise emissions through a partial re-design of the device. First of all, the gas-dynamic noise at the intake mouth is measured during a dedicated experimental campaign. The developed 1D and 3D models are then validated at full load operation, based on experimental data. In particular, 1D model provides a preliminary evaluation of the radiated noise and simultaneously gives reliable boundary conditions for the unsteady 3D CFD simulations. The latter indeed allow to better take into account the geometrical details of the air-filter and guarantee a more accurate gas-dynamic noise prediction. 3D CFD analyses put in evidence that sound emission mainly occur within a frequency range of 350 to 450 Hz.
Journal Article

Analysis of Knock Tendency in a Small VVA Turbocharged Engine Based on Integrated 1D-3D Simulations and Auto-Regressive Technique

2014-04-01
2014-01-1065
In the present paper, two different methodologies are adopted and critically integrated to analyze the knock behavior of a last generation small size spark ignition (SI) turbocharged VVA engine. Particularly, two full load operating points are selected, exhibiting relevant differences in terms of knock proximity. On one side, a knock investigation is carried out by means of an Auto-Regressive technique (AR model) to process experimental in-cylinder pressure signals. This mathematical procedure is used to estimate the statistical distribution of knocking cycles and provide a validation of the following 1D-3D knock investigations. On the other side, an integrated numerical approach is set up, based on the synergic use of 1D and 3D simulation tools. The 1D engine model is developed within the commercial software GT-Power™. It is used to provide time-varying boundary conditions (BCs) for the 3D code, Star-CD™.
Technical Paper

Knock Detection in a Turbocharged S.I. Engine Based on ARMA Technique and Chemical Kinetics

2013-10-14
2013-01-2510
During the last years, a number of techniques aimed at the experimental identification of the knocking onset in Spark-Ignition (SI) Internal Combustion Engines have been proposed. Besides the traditional procedures based on the processing of in-cylinder pressure data in the frequency domain, in the present paper two innovative methods are developed and compared. The first one is based on the use of statistical analysis by applying an Auto Regressive Moving Average (ARMA) technique, coupled to a prediction algorithm. It is shown that such parametric model, applied to the instantaneous in-cylinder pressure measurements, is highly sensitive to knock occurrence and is able to identify soft or heavy knock presence in different engine operating conditions. An alternative, more expensive procedure is developed and compared to the previous one.
Technical Paper

Pros and Cons of Using Different Numerical Techniques for Transmission Loss Evaluation of a Small Engine Muffler

2010-09-28
2010-32-0028
Automotive exhaust systems give a major contribution to the sound quality of a vehicle and must be properly designed in order to produce acceptable acoustic performances. Obviously, noise attenuation is strictly related to the used materials and to its internal geometry. This last influences the wave propagation and the gas-dynamic field. The purpose of this paper is to describe advantages and disadvantages of different numerical approaches in evaluating the acoustic performance in terms of attenuation versus frequency (Transmission Loss) of a commercial two perforated tube muffler under different conditions. At first, a one-dimensional analysis is performed through the 1D GTPower® code, solving the nonlinear flow equations which characterize the wave propagation phenomena. The muffler is characterized as a network of properly connected pipes and volumes starting from 3D CAD information. Then, two different 3D analyses are performed within the commercial STS VNOISE® code.
X