Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Optical Investigation of the Impact of Pilot Ratio Variations on Natural Gas Diesel Dual-Fuel Combustion

2019-04-02
2019-01-1159
Experiments were performed on a small-bore optically accessible engine to investigate diesel pilot ignition (DPI) and reactivity controlled compression ignition (RCCI) dual-fuel combustion strategies with direct injection of natural gas and diesel. Parametric variations of pilot ratio were performed. Natural luminosity and OH chemiluminescence movies of the combustion processes were captured at 28.8 and 14.4 kHz, respectively. These data were used to create ignition maps, which aided in comparing the propagation modes of the two combustion strategies. Lower pilot ratios resulted in lower initial heat release rates, and the initial ignition sites were generally smaller and less luminous; for increased pilot ratios the initial portion of the heat release was larger, and the ignition sites were large and bright. Comparisons between diesel pilot ignition and reactivity controlled compression ignition showed differences in combustion propagation mechanisms.
Journal Article

Effects of Fuel Chemistry and Spray Properties on Particulate Size Distributions from Dual-Fuel Combustion Strategies

2017-03-28
2017-01-1005
The effect of direct-injected fuel on particle size distributions (PSDs) of particulate matter emitted from dual-fuel combustion strategies was investigated. The PSD data were acquired from a light-duty single-cylinder diesel engine operated using conventional diesel combustion (CDC) and two diesel/natural gas dual-fuel combustion strategies. Three different direct-injection (DI) fuels (diesel, 2,6,10-trimethyldodecane, and a primary reference fuel blend) and two different injector nozzles were studied. The DI fuels were chosen to have similar energy and ignition characteristics (heat of combustion and cetane number) but different physical and chemical properties (volatility, aromatics %, viscosity, density). The two nozzles (with different orifice diameter and spray angle) allowed a wide range in DI fuel quantity for the dual-fuel combustion strategies.
Technical Paper

A Statistical Description of Knock Intensity and Its Prediction

2017-03-28
2017-01-0659
Cycle-to-cycle variation in combustion phasing and combustion rate cause knock to occur differently in every cycle. This is found to be true even if the end gas thermo-chemical time history is the same. Three cycles are shown that have matched combustion phasing, combustion rate, and time of knock onset, but have knock intensity that differs by a factor of six. Thus, the prediction of knock intensity must include a stochastic component. It is shown that there is a relationship between the maximum possible knock intensity and the unburned fuel energy at the time of knock onset. Further, for a small window of unburned energy at knock onset, the probability density function of knock intensity is self similar when scaled by the 95th percentile of the cumulative distribution, and log-normal in shape.
Journal Article

Experimental Investigation of the Impact of In-Cylinder Pressure Oscillations on Piston Heat Transfer

2016-10-03
2016-01-9044
An experimental investigation was conducted to explore the impact in-cylinder pressure oscillations have on piston heat transfer. Two fast-response surface thermocouples embedded in the piston top measured transient temperature and a commercial wireless telemetry system was used to transmit thermocouple signals from the moving piston. Measurements were made in a light-duty single-cylinder research engine operated under low temperature combustion regimes including Homogeneous Charge Compression Ignition (HCCI) and Reactivity Controlled Compression Ignition (RCCI) and Conventional Diesel (CDC). The HCCI data showed a correlated trend of higher heat transfer with increased pressure oscillation strength, while the RCCI and CDC data did not. An extensive HCCI data set was acquired. The heat transfer rate - when corrected for differences in cylinder pressure and gas temperature - was found to positively correlate with increased pressure oscillations.
Journal Article

Investigation of the Combustion Front Structure during Homogeneous Charge Compression Ignition Combustion via Laser Rayleigh Scattering Thermometry

2016-04-05
2016-01-0746
The combustion propagation mechanism of homogeneous charge compression ignition combustion was investigated using planar laser Rayleigh scattering thermometry, and was compared to that of spark-ignition combustion. Ethylene and dimethyl ether were chosen as the fuels for SI and HCCI experiments and have nearly constant Rayleigh scattering cross-sections through the combustion process. Beam steering at the entrance window limited the load range for HCCI conditions and confined the quantitative interpretation of the results to local regions over which an effective beam steering correction could be applied. The SI conditions showed a clear bimodal temperature behavior with a well-defined interface between reactants and products. The HCCI results showed large regions that were partially combusted, i.e., at a temperature above the reactants but below the adiabatic flame temperature. Dual-imaging experiments confirm that the burned region was progressing towards the fully burned state.
Technical Paper

Optimization of Heat Release Shape and the Connecting Rod Crank Radius Ratio for Low Engine Noise and High Thermal Efficiency of Premixed Diesel Engine Combustion

2015-04-14
2015-01-0825
Premixed diesel combustion offers the potential of high thermal efficiency and low emissions, however, because the rapid rate of pressure rise and short combustion durations are often associated with low temperature combustion processes, noise is also an issue. The reduction of combustion noise is a technical matter that needs separate attention. Engine noise research has been conducted experimentally with a premixed diesel engine and techniques for engine noise simulation have been developed. The engine employed in the research here is a supercharged, single cylinder DI diesel research engine with a high pressure common rail fuel injection system. In the experiments, the engine was operated at 1600 rpm and 2000 rpm, the engine noise was sampled by two microphones, and the sampled engine noise was averaged and analyzed by an FFT sound analyzer.
Journal Article

Experimental Investigation of Piston Heat Transfer in a Light Duty Engine Under Conventional Diesel, Homogeneous Charge Compression Ignition, and Reactivity Controlled Compression Ignition Combustion Regimes

2014-04-01
2014-01-1182
An experimental study has been conducted to provide insight into heat transfer to the piston of a light-duty single-cylinder research engine under Conventional Diesel (CDC), Homogeneous Charge Compression Ignition (HCCI), and Reactivity Controlled Compression Ignition (RCCI) combustion regimes. Two fast-response surface thermocouples embedded in the piston top measured transient temperature. A commercial wireless telemetry system was used to transmit thermocouple signals from the moving piston. A detailed comparison was made between the different combustion regimes at a range of engine speed and load conditions. The closed-cycle integrated and peak heat transfer rates were found to be lower for HCCI and RCCI when compared to CDC. Under HCCI operation, the peak heat transfer rate showed sensitivity to the 50% burn location.
Journal Article

Comparison of Particulate Size Distributions from Advanced and Conventional Combustion - Part I: CDC, HCCI, and RCCI

2014-04-01
2014-01-1296
Comparison of particulate size distribution measurements from different combustion strategies was conducted with a four-stroke single-cylinder diesel engine. Measurements were performed at four different load-speed points with matched combustion phasing. Particle size distributions were measured using a scanning mobility particle sizer (SMPS). To study the influence of volatile particles, measurements were performed with and without a volatile particle remover (thermodenuder) at low and high dilution ratios. The use of a single testing platform enables quantitative comparison between combustion strategies since background sources of particulate are held constant. A large number of volatile particles were present under low dilution ratio sample conditions for most of the operating conditions. To avoid the impact of volatile particles, comparisons were made based on the high dilution ratio measurements with the thermodenuder.
Journal Article

Experimental Investigation of Transient Response and Turbocharger Coupling for High and Low Pressure EGR Systems

2014-04-01
2014-01-1367
The transient response of an engine with both High Pressure (HP) and Low Pressure (LP) EGR loops was compared by conducting step changes in EGR fraction at a constant engine speed and load. The HP EGR loop performance was shown to be closely linked to turbocharger performance, whereas the LP EGR loop was relatively independent of turbocharger performance and vice versa. The same experiment was repeated with the variable geometry turbine vanes completely open to reduce turbocharger action and achieve similar EGR rate changes with the HP and LP EGR loops. Under these conditions, the increased loop volume of the LP EGR loop prolonged the response of intake O2 concentration following the change in air-fuel ratio. The prolonged change of intake O2 concentration caused emissions to require more time to reach steady state as well. Strong coupling between the HP EGR loop and turbochargers was again observed using a hybrid EGR strategy.
Technical Paper

Experimental and Computational Assessment of Inlet Swirl Effects on a Gasoline Compression Ignition (GCI) Light-Duty Diesel Engine

2014-04-01
2014-01-1299
The light-medium load operating regime (4-8 bar net IMEP) presents many challenges for advanced low temperature combustion strategies (e.g. HCCI, PPC) in light-duty, high speed engines. In this operating regime, lean global equivalence ratios (Φ<0.4) present challenges with respect to autoignition of gasoline-like fuels. Considering this intake temperature sensitivity, the objective of this work was to investigate, both experimentally and computationally, gasoline compression ignition (GCI) combustion operating sensitivity to inlet swirl ratio (Rs) variations when using a single fuel (87-octane gasoline) in a 0.475-liter single-cylinder engine based on a production GM 1.9-liter high speed diesel engine. For the first part of this investigation, an experimental matrix was developed to determine how changing inlet swirl affected GCI operation at various fixed load and engine speed operating conditions (4 and 8 bar net IMEP; 1300 and 2000 RPM).
Journal Article

Comparison of Compression Ignition Engine Noise Metrics in Low-Temperature Combustion Regimes

2013-04-08
2013-01-1659
Many combustion researchers use peak pressure rise rate or ringing intensity to indicate combustion noise in lieu of microphone data or using a combustion noise meter that simulates the attenuation characteristics of the engine structure. In this paper, peak pressure rise rate and ringing intensity are compared to combustion noise using a fully documented algorithm similar to the ones used by combustion noise meters. Data from multiple engines operating under several low-temperature combustion strategies were analyzed. The results suggest that neither peak pressure rise rate nor ringing intensity provides a direct correlation to engine noise over a wide range of operating conditions. Moreover, the estimation of both metrics is often accompanied by the filtering of the pressure data, which changes the absolute value of the results.
Technical Paper

Experimental Investigation of Light-Medium Load Operating Sensitivity in a Gasoline Compression Ignition (GCI) Light-Duty Diesel Engine

2013-04-08
2013-01-0896
The light-medium load operating range (4-7 bar net IMEP) presents many challenges for advanced low temperature combustion strategies utilizing low cetane fuels (specifically, 87-octane gasoline) in light-duty, high-speed engines. The overly lean overall air-fuel ratio (Φ≺0.4) sometimes requires unrealistically high inlet temperatures and/or high inlet boost conditions to initiate autoignition at engine speeds in excess of 1500 RPM. The objective of this work is to identify and quantify the effects of variation in input parameters on overall engine operation. Input parameters including inlet temperature, inlet pressure, injection timing/duration, injection pressure, and engine speed were varied in a ~0.5L single-cylinder engine based on a production General Motors 1.9L 4-cylinder high-speed diesel engine.
Technical Paper

High Resolution In-Cylinder Scalar Field Measurements during the Compression and Expansion Strokes

2013-04-08
2013-01-0567
High-resolution planar laser-induced fluorescence (PLIF) measurements were performed on the scalar field in an optical engine. The measurements were of sufficient resolution to fully resolve all of the length scales of the flow field through the full cycle. The scalar dissipation spectrum was calculated, and by fitting the results to a model turbulent spectrum the Batchelor scale of the turbulent flow was estimated. The scalar inhomogeneity was introduced by a low-momentum gas jet injection. A consistent trend was observed in all data; the Batchelor scale showed a minimum value at top dead center (TDC) and was nearly symmetric about TDC. Increasing the engine speed resulted in a decrease of the Batchelor scale, and the presence of a shroud on the intake valve, which increased the turbulence intensity, also reduced the Batchelor scale. The effect of the shrouded valve was less significant compared to the effect of engine speed.
Technical Paper

Effects of Turbulence on Mixture Stratification in a Small-Bore Utility Engine

2012-10-23
2012-32-0005
The current work investigates the in-cylinder mixing of a fluorescent tracer species inducted into the engine through a small-diameter tube mounted along the inner port wall and the remaining inlet stream in a small-bore utility engine. Planar laser-induced fluorescence (PLIF) measurements were acquired on a single plane, parallel to and approximately 4 mm below the cylinder head deck, throughout the intake and compression strokes. The data were analyzed to qualitatively and quantitatively describe the evolution of the mixture stratification. The highest degree of stratification in the mean field was observed at a timing of 90 crank angle (CA) degrees after top dead center (aTDC) of the intake stroke, which corresponds closely to the point of maximum intake valve lift (105 CA degrees aTDC).
Journal Article

An Optical Investigation of Fuel Composition Effects in a Reactivity Controlled HSDI Engine

2012-04-16
2012-01-0691
Reactivity controlled compression ignition combustion was investigated for three fuel combinations: isooctane-diesel, PRF90-diesel, and E85-diesel. Experiments were conducted at 1200 rpm, 160 kPa absolute intake pressure, and fixed total fuel energy using ‘optimal’ operating condition for each fuel combination that were chosen based on combustion performance from SOI timing and premixed energy fraction sweeps. The heat release duration was found to scale with the difference in reactivity between the premixed and direction injected fuel; a small difference gives rise to short heat release duration, similar to that of HCCI combustion. Conversely, as the difference increases, the heat release period lengthens. The high-speed optical data confirmed that the combustion occurred in a staged manner from the high-reactivity zones, which were located at the periphery of the chamber, to low-reactivity zones in the field of view.
Journal Article

Analysis of Deviations from Steady State Performance During Transient Operation of a Light Duty Diesel Engine

2012-04-16
2012-01-1067
Deviations between transient and steady state operation of a modern light duty diesel engine were identified by comparing rapid load transitions to steady state tests at the same speeds and fueling rates. The validity of approximating transient performance by matching the transient charge air flow rate and intake manifold pressure at steady state was also assessed. Results indicate that for low load operation with low temperature combustion strategies, transient deviations of MAF and MAP from steady state values are small in magnitude or short in duration and have relatively little effect on transient engine performance. A new approximation accounting for variations in intake temperature and excess oxygen content of the EGR was more effective at capturing transient emissions trends, but significant differences in magnitudes remained in certain cases indicating that additional sources of variation between transient and steady state performance remain unaccounted for.
Journal Article

Gasoline DICI Engine Operation in the LTC Regime Using Triple- Pulse Injection

2012-04-16
2012-01-1131
An investigation of high speed direct injection (DI) compression ignition (CI) engine combustion fueled with gasoline injected using a triple-pulse strategy in the low temperature combustion (LTC) regime is presented. This work aims to extend the operation ranges for a light-duty diesel engine, operating on gasoline, that have been identified in previous work via extended controllability of the injection process. The single-cylinder engine (SCE) was operated at full load (16 bar IMEP, 2500 rev/min) and computational simulations of the in-cylinder processes were performed using a multi-dimensional CFD code, KIVA-ERC-Chemkin, that features improved sub-models and the Chemkin library. The oxidation chemistry of the fuel was calculated using a reduced mechanism for primary reference fuel combustion chosen to match ignition characteristics of the gasoline fuel used for the SCE experiments.
Journal Article

Estimation of Surface Heat Flux in IC Engines Using Temperature Measurements: Processing Code Effects

2012-04-16
2012-01-1208
Heat transfer in internal combustion engines is taking on greater importance as manufacturers strive to increase efficiency while keeping pollutant emissions low and maintaining adequate performance. Wall heat transfer is experimentally evaluated using temperature measurements both on and below the surface using a physical model of conduction in the wall. Three classes of model inversion are used to recover heat flux from surface temperature measurements: analytical methods, numerical methods and inverse heat conduction methods; the latter method has not been previously applied to engine data. This paper details the inherent assumptions behind, required steps for implementation of, and merits and weaknesses of these heat flux calculation methods. The analytical methods, which have been most commonly employed for engine data, are shown to suffer from sensitivity to measurement noise that requires a priori signal filtering.
Technical Paper

Characterization of Particulate Morphology, Nanostructures, and Sizes in Low-Temperature Combustion with Biofuels

2012-04-16
2012-01-0441
Detailed characteristics of morphology, nanostructures, and sizes were analyzed for particulate matter (PM) emissions from low-temperature combustion (LTC) modes of a single-cylinder, light-duty diesel engine. The LTC engines have been widely studied in an effort to achieve high combustion efficiency and low exhaust emissions. Recent reports indicate that the number of nucleation mode particles increased in a broad engine operating range, which implies a negative impact on future PM emissions regulations in terms of the nanoparticle number. However, the size measurement of solid carbon particles by commercial instruments is indeed controversial due to the contribution of volatile organics to small nanoparticles. In this work, an LTC engine was operated with various biofuel blends, such as blends (B20) of soy bean oil (soy methyl ester, SME20) and palm oil (palm methyl ester, PME20), as well as an ultra-low-sulfur diesel fuel.
Technical Paper

Thermodynamic Benefits of Opposed-Piston Two-Stroke Engines

2011-09-13
2011-01-2216
A detailed thermodynamic analysis was performed to demonstrate the fundamental efficiency advantage of an opposed-piston two-stroke engine over a standard four-stroke engine. Three engine configurations were considered: a baseline six-cylinder four-stroke engine, a hypothetical three-cylinder opposed-piston four-stroke engine, and a three-cylinder opposed-piston two-stroke engine. The bore and stroke per piston were held constant for all engine configurations to minimize any potential differences in friction. The closed-cycle performance of the engine configurations were compared using a custom analysis tool that allowed the sources of thermal efficiency differences to be identified and quantified.
X