Refine Your Search

Topic

Author

Search Results

Journal Article

EGR Dilution and Fuel Property Effects on High-Efficiency Spark-Ignition Flames

2021-04-06
2021-01-0483
Modern spark ignition internal combustion engines rely on fast combustion rates and high dilution to achieve high brake thermal efficiencies. To accomplish this, new engine designs have moved towards increased tumble ratios and stroke-to-bore ratios. Increased tumble ratios correlate positively with increases in turbulent kinetic energy and improved fuel and residual gas mixing, all of which favor faster and more efficient combustion. Longer stroke-to-bore ratios allow higher geometric compression ratios and use of late intake valve closing to control peak compression pressures and temperatures. The addition of dilution to improve efficiency is limited by the resulting increase in combustion instabilities manifested by cycle-to-cycle variability.
Technical Paper

Achieving Diesel-Like Efficiency in a High Stroke-to-Bore Ratio DISI Engine under Stoichiometric Operation

2020-04-14
2020-01-0293
This work explores pathways to achieve diesel-like, high-efficiency combustion with stoichiometric 3-way catalyst compatible spark ignition (SI). A high stroke-to-bore engine design (1.5:1) with cooled exhaust gas recirculation (EGR) and high compression ratio (rc) was used to improve engine efficiency by up to 30% compared with a production turbocharged gasoline direct injection spark ignition engine. To achieve efficiency improvements, engine experiments were coupled with computational fluid dynamics simulations to guide and explain experimental trends between the original engine and the high stroke-to-bore ratio design (1.5:1). The effects of EGR and late intake valve closing (IVC) and fuel characteristics are investigated through their effects on knock mitigation. Direct injection of 91 RON E10 gasoline, 99 RON E0 gasoline, and liquified petroleum gas (i.e., propane/autogas) were evaluated with geometric rc ranging from 13.3:1 to 16.8:1.
Journal Article

The Reduced Effectiveness of EGR to Mitigate Knock at High Loads in Boosted SI Engines

2017-09-04
2017-24-0061
Numerous studies have demonstrated that exhaust gas recirculation (EGR) can attenuate knock propensity in spark ignition (SI) engines at naturally aspirated or lightly boosted conditions [1]. In this study, we investigate the role of cooled EGR under higher load conditions with multiple fuel compositions, where highly retarded combustion phasing typical of modern SI engines was used. It was found that under these conditions, EGR attenuation of knock is greatly reduced, where EGR doesn’t allow significant combustion phasing advance as it does under lighter load conditions. Detailed combustion analysis shows that when EGR is added, the polytropic coefficient increases causing the compressive pressure and temperature to increase. At sufficiently highly boosted conditions, the increase in polytropic coefficient and additional trapped mass from EGR can sufficiently reduce fuel ignition delay to overcome knock attenuation effects.
Journal Article

Effects of Fuel Composition on EGR Dilution Tolerance in Spark Ignited Engines

2016-04-05
2016-01-0715
Fuel-specific differences in exhaust gas recirculation (EGR) dilution tolerance are studied in a modern, direct-injection single-cylinder research engine. A total of 6 model fuel blends are examined at a constant research octane number (RON) of 95 using n-heptane, isooctane, toluene, and ethanol. Laminar flame speeds for these mixtures, which are calculated using two different methods (an energy fraction mixing rule and a detailed kinetic simulation), span a range of about 6 cm/s. A nominal load of 350 kPa IMEPg at 2000 rpm is maintained with constant fueling and varying CA50 from 8-20 CAD aTDCf. EGR is increased until a COV of IMEP of 5% is reached. The results illustrate that flame speed affects EGR dilution tolerance; fuels with increased flame speeds have increased EGR tolerance. Specifically, flame speed correlates most closely to the initial flame kernel growth, measured as the time of ignition to 5% mass fraction burned.
Journal Article

Direct Dual Fuel Stratification, a Path to Combine the Benefits of RCCI and PPC

2015-04-14
2015-01-0856
Control of the timing and magnitude of heat release is one of the biggest challenges for premixed compression ignition, especially when attempting to operate at high load. Single-fuel strategies such as partially premixed combustion (PPC) use direct injection of gasoline to stratify equivalence ratio and retard heat release, thereby reducing pressure rise rate and enabling high load operation. However, retarding the heat release also reduces the maximum work extraction, effectively creating a tradeoff between efficiency and noise. Dual-fuel strategies such as reactivity controlled compression ignition (RCCI) use premixed gasoline and direct injection of diesel to stratify both equivalence ratio and fuel reactivity, which allows for greater control over the timing and duration of heat release. This enables combustion phasing closer to top dead center (TDC), which is thermodynamically favorable.
Journal Article

Improving the Understanding of Intake and Charge Effects for Increasing RCCI Engine Efficiency

2014-04-01
2014-01-1325
The present experimental engine efficiency study explores the effects of intake pressure and temperature, and premixed and global equivalence ratios on gross thermal efficiency (GTE) using the reactivity controlled compression ignition (RCCI) combustion strategy. Experiments were conducted in a heavy-duty single-cylinder engine at constant net load (IMEPn) of 8.45 bar, 1300 rev/min engine speed, with 0% EGR, and a 50% mass fraction burned combustion phasing (CA50) of 0.5°CA ATDC. The engine was port fueled with E85 for the low reactivity fuel and direct injected with 3.5% 2-ethylhexyl nitrate (EHN) doped into 91 anti-knock index (AKI) gasoline for the high-reactivity fuel. The resulting reactivity of the enhanced fuel corresponds to an AKI of approximately 56 and a cetane number of approximately 28. The engine was operated with a wide range of intake pressures and temperatures, and the ratio of low- to high-reactivity fuel was adjusted to maintain a fixed speed-phasing-load condition.
Journal Article

Experimental Investigation of Engine Speed Transient Operation in a Light Duty RCCI Engine

2014-04-01
2014-01-1323
Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that utilizes in-cylinder fuel blending to produce low NOx and PM emissions while maintaining high thermal efficiency. The current study investigates RCCI and conventional diesel combustion (CDC) operation in a light-duty multi-cylinder engine over transient operating conditions using a high-bandwidth, transient capable engine test cell. Transient RCCI and CDC combustion and emissions results are compared over an up-speed change from 1,000 to 2,000 rev/min. and a down-speed change from 2,000 to 1,000 rev/min. at a constant 2.0 bar BMEP load. The engine experiments consisted of in-cylinder fuel blending with port fuel-injection (PFI) of gasoline and early-cycle, direct-injection (DI) of ultra-low sulfur diesel (ULSD) for the RCCI tests and the same ULSD for the CDC tests.
Journal Article

Intermediate Alcohol-Gasoline Blends, Fuels for Enabling Increased Engine Efficiency and Powertrain Possibilities

2014-04-01
2014-01-1231
The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in mid-level alcohol-gasoline blends with 24% vol./vol. iso-butanol-gasoline (IB24) and 30% vol./vol. ethanol-gasoline (E30). A single-cylinder research engine is used with a low and high compression ratio of 9.2:1 and 11.85:1 respectively. The engine is equipped with hydraulically actuated valves, laboratory intake air, and is capable of external exhaust gas recirculation (EGR). All fuels are operated to full-load conditions with λ=1, using both 0% and 15% external cooled EGR. The results demonstrate that higher octane number bio-fuels better utilize higher compression ratios with high stoichiometric torque capability. Specifically, the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with the 11.85:1 compression ratio using E30 as compared to 87 AKI, up to 20 bar IMEPg at λ=1 (with 15% EGR, 18.5 bar with 0% EGR).
Technical Paper

Efficiency and Emissions performance of Multizone Stratified Compression Ignition Using Different Octane Fuels

2013-04-08
2013-01-0263
Advanced combustion systems that simultaneously address PM and NOx while retaining the high efficiency of modern diesel engines, are being developed around the globe. One of the most difficult problems in the area of advanced combustion technology development is the control of combustion initiation and retaining power density. During the past several years, significant progress has been accomplished in reducing emissions of NOx and PM through strategies such as LTC/HCCI/PCCI/PPCI and other advanced combustion processes; however control of ignition and improving power density has suffered to some degree - advanced combustion engines tend to be limited to the 10 bar BMEP range and under. Experimental investigations have been carried out on a light-duty DI multi-cylinder diesel automotive engine. The engine is operated in low temperature combustion (LTC) mode using 93 RON (Research Octane Number) and 74 RON fuel.
Technical Paper

Validation of a Sparse Analytical Jacobian Chemistry Solver for Heavy-Duty Diesel Engine Simulations with Comprehensive Reaction Mechanisms

2012-09-24
2012-01-1974
The paper presents the development of a novel approach to the solution of detailed chemistry in internal combustion engine simulations, which relies on the analytical computation of the ordinary differential equations (ODE) system Jacobian matrix in sparse form. Arbitrary reaction behaviors in either Arrhenius, third-body or fall-off formulations can be considered, and thermodynamic gas-phase mixture properties are evaluated according to the well-established 7-coefficient JANAF polynomial form. The current work presents a full validation of the new chemistry solver when coupled to the KIVA-4 code, through modeling of a single cylinder Caterpillar 3401 heavy-duty engine, running in two-stage combustion mode.
Journal Article

Gasoline DICI Engine Operation in the LTC Regime Using Triple- Pulse Injection

2012-04-16
2012-01-1131
An investigation of high speed direct injection (DI) compression ignition (CI) engine combustion fueled with gasoline injected using a triple-pulse strategy in the low temperature combustion (LTC) regime is presented. This work aims to extend the operation ranges for a light-duty diesel engine, operating on gasoline, that have been identified in previous work via extended controllability of the injection process. The single-cylinder engine (SCE) was operated at full load (16 bar IMEP, 2500 rev/min) and computational simulations of the in-cylinder processes were performed using a multi-dimensional CFD code, KIVA-ERC-Chemkin, that features improved sub-models and the Chemkin library. The oxidation chemistry of the fuel was calculated using a reduced mechanism for primary reference fuel combustion chosen to match ignition characteristics of the gasoline fuel used for the SCE experiments.
Journal Article

Heavy-Duty RCCI Operation Using Natural Gas and Diesel

2012-04-16
2012-01-0379
Many recent studies have shown that the Reactivity Controlled Compression Ignition (RCCI) combustion strategy can achieve high efficiency with low emissions. However, it has also been revealed that RCCI combustion is difficult at high loads due to its premixed nature. To operate at moderate to high loads with gasoline/diesel dual fuel, high amounts of EGR or an ultra low compression ratio have shown to be required. Considering that both of these approaches inherently lower thermodynamic efficiency, in this study natural gas was utilized as a replacement for gasoline as the low-reactivity fuel. Due to the lower reactivity (i.e., higher octane number) of natural gas compared to gasoline, it was hypothesized to be a better fuel for RCCI combustion, in which a large reactivity gradient between the two fuels is beneficial in controlling the maximum pressure rise rate.
Technical Paper

Numerical Optimization of a Light-Duty Compression Ignition Engine Fuelled With Low-Octane Gasoline

2012-04-16
2012-01-1336
In automotive industry it has been a challenge to retain diesel-like thermal efficiency while maintaining low emissions. Numerous studies have shown significant progress in achieving low emissions through the introduction of common-rail injection systems, multiple injections and exhaust gas recirculation and by using a high octane number fuel, like gasoline, to achieve adequate premixing. On the other hand, low temperature combustion strategies, like HCCI and PCCI, have also shown promising results in terms of reducing both NOx and soot emissions simultaneously. With the increasing capacity of computers, multi-dimensional CFD engine modeling enables a reasonably good prediction of combustion characteristics and pollutant emissions, which is the motivation behind the present research. The current research effort presents an optimization study of light-duty compression ignition engine performance, while meeting the emission regulation targets.
Technical Paper

Effect of Compression Ratio and Piston Geometry on RCCI Load Limits and Efficiency

2012-04-16
2012-01-0383
The present experimental study explores the effects of compression ratio and piston design in a heavy-duty diesel engine operated with Reactivity Controlled Compression Ignition (RCCI) combustion. In previous studies, RCCI combustion with in-cylinder fuel blending using port-fuel-injection of a low reactivity fuel and optimized direct-injections of higher reactivity fuels was demonstrated to permit near-zero levels of NOX and PM emissions in-cylinder, while simultaneously realizing high thermal efficiencies. The present study consists of RCCI experiments at loads from 4 to 17 bar indicated mean effective pressure at engine speeds of 1,300 and 1,700 [rev/min]. The experiments used a modified piston to examine the effect of piston crevice volume, squish geometry, and compression ratio on performance and efficiency.
Journal Article

Computational Optimization of Reactivity Controlled Compression Ignition in a Heavy-Duty Engine with Ultra Low Compression Ratio

2011-09-11
2011-24-0015
Many studies have demonstrated ability of low temperature combustion to yield low NOx and soot while maintaining diesel-like thermal efficiencies. Methods of achieving low temperature combustion are numerous and range from using high cetane number fuels, like diesel, with large amounts of exhaust gas recirculation, to completely premixing a high octane number fuel, like gasoline, and approaching an HCCI-like condition. Both of the aforementioned techniques have relatively short combustion duration that results in very a rapid rate of heat release, and hence very rapid rates of pressure rise. This has been one of the major challenges for premixed, low temperature combustion at mid and high load. Reactivity Controlled Compression Ignition (RCCI) has been introduced recently, which is a dual fuel partially premixed combustion concept.
Journal Article

Study of High Speed Gasoline Direct Injection Compression Ignition (GDICI) Engine Operation in the LTC Regime

2011-04-12
2011-01-1182
An investigation of high speed direct injection (DI) compression ignition (CI) engine combustion fueled with gasoline (termed GDICI for Gasoline Direct-Injection Compression Ignition) in the low temperature combustion (LTC) regime is presented. As an aid to plan engine experiments at full load (16 bar IMEP, 2500 rev/min), exploration of operating conditions was first performed numerically employing a multi-dimensional CFD code, KIVA-ERC-Chemkin, that features improved sub-models and the Chemkin library. The oxidation chemistry of the fuel was calculated using a reduced mechanism for primary reference fuel combustion. Operation ranges of a light-duty diesel engine operating with GDICI combustion with constraints of combustion efficiency, noise level (pressure rise rate) and emissions were identified as functions of injection timings, exhaust gas recirculation rate and the fuel split ratio of double-pulse injections.
Journal Article

Computational Optimization of a Heavy-Duty Compression Ignition Engine Fueled with Conventional Gasoline

2011-04-12
2011-01-0356
The potential of low temperature combustion to yield low NOx and soot while maintaining diesel-like thermal efficiencies has been demonstrated through countless studies. Methods of achieving low temperature combustion are just as numerous and they range from using high cetane number fuels, like diesel, with large amounts of exhaust gas recirculation, to completely premixing a high octane number fuel, like gasoline, and approaching an HCCI-like condition. The potential of operating a heavy-duty compression ignition engine fueled with conventional gasoline in a partially premixed combustion mode to have high thermal efficiency and low emissions has been demonstrated in this study. The objective of this work was to optimize the engine using computational tools. The KIVA3V-CHEMKIN code, a multi-dimensional engine CFD model was coupled to a Nondominated Sorting Genetic Algorithm (NSGA II), which is a multi-objective genetic algorithm.
Technical Paper

Effect of Flowfield Non-Uniformities on Emissions Predictions in HSDI Engines

2011-04-12
2011-01-0821
The role of the fluid motion in a diesel engine on mixing and combustion was investigated using the CFD code Kiva-3v. The study considered pre-mixed charge compression ignition (PCCI) combustion that is a hybrid combustion system characterized by early injection timings and high amounts of EGR dilution to delay the start and lower the temperature of combustion. The fuel oxidizer mixture is not homogeneous at the start of combustion and therefore requires further mixing for complete combustion. PCCI combustion systems are characterized by relatively high CO and UHC emissions. This work investigates attenuating CO emissions by enhancing mixing processes through non-uniform flowfield motions. The fluid motion was characterized by the amount of average angular rotation about the cylindrical axis (swirl ratio) and the amount of non-uniform motion imparted by the relative amounts of mass inducted through tangential and helical intake ports in a 0.5L HSDI diesel engine.
Technical Paper

CFD Study of HCPC Turbocharged Engine

2010-10-25
2010-01-2107
Homogeneous-charge, compression-ignition (HCCI) combustion is triggered by spontaneous ignition in dilute homogeneous mixtures. The combustion rate must be reduced by suitable solutions such as high rates of Exhaust Gas Recirculation (EGR) and/or lean mixtures. HCCI is considered a very effective way to reduce engine pollutant emissions, however only a few HCCI engines have entered into production. HCCI combustion currently cannot be extended to the whole engine operating range, especially to high loads, since the use of EGR displaces air from the cylinder, limiting engine mean effective pressure, thus the engine must be able to operate also in conventional mode. This paper concerns an innovative concept to control HCCI combustion in diesel-fuelled engines. This new combustion concept is called Homogenous Charge Progressive Combustion (HCPC). HCPC is based on split-cycle principle.
Journal Article

Extending the High Load Operating Limit of a Naturally-Aspirated Gasoline HCCI Combustion Engine

2010-04-12
2010-01-0847
Homogenous Charge Compression Ignition (HCCI) combustion offers efficiency improvements compared to conventional gasoline engines. However, due to the nature of HCCI, traditional HCCI combustion can be realized only in a limited operating range. The HCCI operation at high load is limited by excessive combustion noise. In order to maximize the fuel economy benefits of HCCI its operating range needs to be extended to higher loads. In particular, one immediate benefit of an increased load range on the NEDC driving cycle is the avoidance of transitions between SI operation and HCCI operation. In this research a detailed investigation of the fundamental reasons for high combustion noise was performed. Spark-assisted HCCI combustion was found to be a key factor to reduce combustion noise at high load condition.
X