Refine Your Search

Topic

Search Results

Technical Paper

Consumer-Oriented Energy Use and Range Metrics for Battery Electric Vehicles

2024-04-09
2024-01-2596
The present study was motivated by a need to expand information for consumers offered through the FuelEconomy.Gov website. To that end, a power-based modeling approach has been used to examine the effect of steady-speed driving on estimated range for model year 2020 – 2023 battery electric vehicles (BEVs). This approach allowed rapid study of a broader range of BEV models than could be accomplished through vehicle tests. Publicly accessible certification test results and other data were used to perform a regression between cycle-average tractive power requirements and the resulting electrical power. This regression enabled estimation of electric power and energy use over a range of steady highway speeds. These analyses in turn allowed projection of vehicle range at differing speeds. The projections agree within 6% with available 65 MPH manufacturer test data.
Technical Paper

Assessment of the Effectiveness of Three Aftermarket Gasoline Fuel Stabilizers in Preventing Gum Formation and Loss of Oxidation Stability

2022-03-29
2022-01-0486
Fuel stabilizers have long been marketed to consumers to prevent oxidation and gum formation. In the past, gasoline storage for long periods of time was commonly limited to off-road equipment that was used infrequently. Cars and trucks that were driven regularly consumed the fuel in their tanks rapidly enough to avoid excessive fuel aging. However, plug-in hybrid electric vehicles (PHEVs) may be operated frequently without engine operation, raising the possibility that fuel may be stored in the tank for longer periods of time. Studies of the oxidation of gasoline have provided scientific understanding of the process, but there is little if any scientifically backed information aimed at aiding consumers in assessing the need to use an aftermarket fuel stabilizer if they anticipate lengthy periods of fuel storage in their fuel tank.
Journal Article

Analytical Examination of the Relationship between Fuel Properties, Engine Efficiency, and R Factor Values

2019-04-02
2019-01-0309
The variability in gasoline energy content, though most frequently not a consumer concern, is an issue of concern for vehicle manufacturers in demonstrating compliance with regulatory requirements. Advancements in both vehicle technology, test methodology, and fuel formulations have increased the level of visibility and concern with regard to the energy content of fuels used for regulatory testing. The R factor was introduced into fuel economy calculations for vehicle certification in the late 1980s as a means of addressing batch-to-batch variations in the heating value of certification fuels and the resulting variations in fuel economy results. Although previous studies have investigated values of the R factor for modern vehicles through experimentation, subsequent engine studies have made clear that it is difficult to distinguish between the confounding factors that influence engine efficiency when R is being studied experimentally.
Journal Article

Estimation of the Fuel Efficiency Potential of Six Gasoline Blendstocks Identified by the U.S. Department of Energy’s Co-Optimization of Fuels and Engines Program

2019-01-15
2019-01-0017
Six blendstocks identified by the Co-Optimization of Fuels & Engines Program were used to prepare fuel blends using a fixed blendstock for oxygenate blending and a target RON of 97. The blendstocks included ethanol, n-propanol, isopropanol, isobutanol, diisobutylene, and a bioreformate surrogate. The blends were analyzed and used to establish interaction factors for a non-linear molar blending model that was used to predict RON and MON of volumetric blends of the blendstocks up to 35 vol%. Projections of efficiency increase, volumetric fuel economy increase, and tailpipe CO2 emissions decrease were produced using two different estimation techniques to evaluate the potential benefits of the blendstocks. Ethanol was projected to provide the greatest benefits in efficiency and tailpipe CO2 emissions, but at intermediate levels of volumetric fuel economy increase over a smaller range of blends than other blendstocks.
Journal Article

Exploring the Relationship Between Octane Sensitivity and Heat-of-Vaporization

2016-04-05
2016-01-0836
The latent heat-of-vaporization (HoV) of blends of biofuel and hydrocarbon components into gasolines has recently experienced expanded interest because of the potential for increased HoV to increase fuel knock resistance in direct-injection (DI) engines. Several studies have been conducted, with some studies identifying an additional anti-knock benefit from HoV and others failing to arrive at the same conclusion. Consideration of these studies holistically shows that they can be grouped according to the level of fuel octane sensitivity variation within their fuel matrices. When comparing fuels of different octane sensitivity significant additional anti-knock benefits associated with HoV are sometimes observed. Studies that fix the octane sensitivity find that HoV does not produce additional anti-knock benefit. New studies were performed at ORNL and NREL to further investigate the relationship between HoV and octane sensitivity.
Technical Paper

Filter-based control of particulate matter from a lean gasoline direct injection engine

2016-04-05
2016-01-0937
New regulations requiring increases in vehicle fuel economy are challenging automotive manufacturers to identify fuel-efficient engines for future vehicles. Lean gasoline direct injection (GDI) engines offer significant increases in fuel efficiency over the more common stoichiometric GDI engines already in the marketplace. However, particulate matter (PM) emissions from lean GDI engines, particularly during stratified combustion modes, are problematic for lean GDI technology to meet U.S. Environmental Protection Agency Tier 3 and other future emission regulations. As such, the control of lean GDI PM with wall-flow filters, referred to as gasoline particulate filter (GPF) technology, is of interest. Since lean GDI PM chemistry and morphology differ from diesel PM (where more filtration experience exists), the functionality of GPFs needs to be studied to determine the operating conditions suitable for efficient PM removal.
Journal Article

Effects of Oil Formulation, Oil Separator, and Engine Speed and Load on the Particle Size, Chemistry, and Morphology of Diesel Crankcase Aerosols

2016-04-05
2016-01-0897
The recirculation of gases from the crankcase and valvetrain can potentially lead to the entrainment of lubricant in the form of aerosols or mists. As boost pressures increase, the blow-by flow through both the crankcase and the valve cover increases. The resulting lubricant can then become part of the intake charge, potentially leading to fouling of intake components such as the intercooler and the turbocharger. The entrained aerosol which can contain the lubricant and soot may or may not have the same composition as the bulk lubricant. The complex aerodynamic processes that lead to entrainment can strip out heavy components or volatilize light components. Similarly, the physical size and numbers of aerosol particles can be dependent upon the lubricant formulation and engine speed and load. For instance, high rpm and load may increase not only the flow of gases but the amount of lubricant aerosol.
Technical Paper

Selective Catalytic Reduction of Oxides of Nitrogen with Ethanol/Gasoline Blends over a Silver/Alumina Catalyst in Lean Gasoline Engine Exhaust

2015-04-14
2015-01-1008
Ethanol is a very effective reductant for nitrogen oxides (NOX) over silver/alumina (Ag/Al2O3) catalysts in lean exhaust environments. With the widespread availability of ethanol/gasoline-blended fuel in the U.S., lean gasoline engines equipped with Ag/Al2O3 catalysts have the potential to deliver higher fuel economy than stoichiometric gasoline engines and to increase biofuel utilization while meeting exhaust emissions regulations. In this work a pre-commercial 2 wt% Ag/Al2O3 catalyst was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine for the selective catalytic reduction (SCR) of NOX with ethanol/gasoline blends. The ethanol/gasoline blends were delivered via in-pipe injection upstream of the Ag/Al2O3 catalyst with the engine operating under lean conditions. A number of engine conditions were chosen to provide a range of temperatures and space velocities for evaluation of catalyst performance.
Journal Article

Determination of the R Factor for Fuel Economy Calculations Using Ethanol-Blended Fuels over Two Test Cycles

2014-04-01
2014-01-1572
During the 1980s, the U.S. Environmental Protection Agency (EPA) incorporated the R factor into fuel economy calculations in order to address concerns about the impacts of test fuel property variations on corporate average fuel economy (CAFE) compliance, which is determined using the Federal Test Procedure (FTP) and Highway Fuel Economy Test (HFET) cycles. The R factor is defined as the ratio of the percent change in fuel economy to the percent change in volumetric heating value for tests conducted using two differing fuels. At the time the R-factor was devised, tests using representative vehicles initially indicated that an appropriate value for the R factor was 0.6. Reassessing the R factor has recently come under renewed interest after EPA's March 2013 proposal to adjust the properties of certification gasoline to contain significant amounts of ethanol.
Technical Paper

Neutron Tomography of Exhaust Gas Recirculation Cooler Deposits

2014-04-01
2014-01-0628
Exhaust gas recirculation (EGR) cooler fouling has become a significant issue for compliance with NOx emissions standards. Exhaust gas laden with particulate matter flows through the EGR cooler which causes deposits to form through thermophoresis and condensation. The low thermal conductivity of the resulting deposit reduces the effectiveness of the EGR system. In order to better understand this phenomenon, industry-provided coolers were characterized using neutron tomography. Neutrons are strongly attenuated by hydrogen but only weakly by metals which allows for non-destructive imaging of the deposit through the metal heat exchanger. Multiple 2-D projections of cooler sections were acquired by rotating the sample around the axis of symmetry with the spatial resolution of each image equal to ∼70 μm. A 3-D tomographic set was then reconstructed, from which slices through the cooler sections were extracted across different planes.
Journal Article

The Impact of Low Octane Hydrocarbon Blending Streams on the Knock Limit of “E85”

2013-04-08
2013-01-0888
Ethanol is a very attractive fuel from an end-use perspective because it has a high chemical octane number and a high latent heat of vaporization. When an engine is optimized to take advantage of these fuel properties, both efficiency and power can be increased through higher compression ratio, direct fuel injection, higher levels of boost, and a reduced need for enrichment to mitigate knock or protect the engine and aftertreatment system from overheating. The ASTM D5798 specification for high level ethanol blends, commonly called “E85,” underwent a major revision in 2011. The minimum ethanol content was revised downward from 68 vol% to 51 vol%, which combined with the use of low octane blending streams such as natural gasoline introduces the possibility of a lower octane “E85” fuel.
Journal Article

Combustion Studies with FACE Diesel Fuels: A Literature Review

2012-09-10
2012-01-1688
The CRC Fuels for Advanced Combustion Engines (FACE) Working Group has provided a matrix of experimental diesel fuels for use in studies on the effects of three parameters, Cetane number (CN), aromatics content, and 90 vol% distillation temperature (T90), on combustion and emissions characteristics of advanced combustion strategies. Various types of fuel analyses and engine experiments were performed in well-known research institutes. This paper reviews a collection of research findings obtained with these nine fuels. An extensive collection of analyses were performed by members of the FACE working group on the FACE diesel fuels as a means of aiding in understanding the linkage between fuel properties and combustion and emissions performance. These analyses included non-traditional chemical techniques as well as established ASTM tests. In a few cases, both ASTM tests and advanced analyses agreed that some design variables differed from their target values when the fuels were produced.
Journal Article

NMOG Emissions Characterizations and Estimation for Vehicles Using Ethanol-Blended Fuels

2012-04-16
2012-01-0883
Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate.
Technical Paper

Exhaust Particle Characterization for Lean and Stoichiometric DI Vehicles Operating on Ethanol-Gasoline Blends

2012-04-16
2012-01-0437
Gasoline direct injection (GDI) engines can offer better fuel economy and higher performance over their port-fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet the U.S. fuel economy standards for 2016. Furthermore, lean-burn GDI engines can offer even higher fuel economy than stoichiometric GDI engines and have overcome challenges associated with cost-effective aftertreatment for NOx control. Along with changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the current 10% due to the recent EPA waiver allowing 15% ethanol. In addition, the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA) mandates the use of biofuels in upcoming years.
Journal Article

Limitations and Recommended Practice In the Use of Compression and Leak-Down Tests to Monitor Gradual Engine Degradation

2011-12-06
2011-01-2427
Compression and leak-down tests are frequently used to identify and diagnose failed engine power cylinders. It is also often desirable in research and testing programs to use these tests to monitor incremental changes in cylinder leakage. This paper investigates whether these tests are adequate in their present form to monitor incremental changes in cylinder leakage. Results are presented from two vehicle fleets at two test sites. Compression and leak-down tests were conducted on these fleets periodically during a mileage accumulation study. The results were used to establish the variability inherent in the compression and leak-down test processes. Comparisons between the results at the initial mileage test for the study vehicles with those at the final mileage test are shown to be largely within the uncertainty established for repeat assessments.
Journal Article

Carbonyl Formation during High Efficiency Clean Combustion of FACE Fuels

2010-10-25
2010-01-2212
The low temperature conditions that occur during high efficiency clean combustion (HECC) often lead to the formation of partially oxidized HC species such as aldehydes, ketones and carboxylic acids. Using the diesel fuels specified by the Fuels for Advanced Combustion Engines (FACE) working group, carbonyl species were collected from the exhaust of a light duty diesel engine operating under HECC conditions. High pressure liquid chromatography - mass spectrometry (LC-MS) was used to speciate carbonyls as large as C 9 . A relationship between carbonyl species formed in the exhaust and fuel composition and properties was determined. Data were collected at the optimum fuel efficiency point for a typical road load condition. Results of the carbonyl analysis showed changes in formaldehyde and acetaldehyde formation, formation of higher molecular weight carbonyls and the formation of aromatic carbonyls.
Technical Paper

In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine

2010-10-25
2010-01-2206
In-cylinder fuel blending of gasoline with diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 5.5 bar net mean effective pressure (NMEP). Gasoline was introduced with a port-fuel-injection system.
Journal Article

Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties

2009-11-02
2009-01-2769
The CRC Fuels for Advanced Combustion Engines working group has worked to identify a matrix of research diesel fuels for use in advanced combustion research applications. Nine fuels were specified and formulated to investigate the effects of cetane number aromatic content and 90% distillation fraction. Standard ASTM analyses were performed on the fuels as well as GC/MS and1H/13C NMR analyses and thermodynamic characterizations. Details of the actual results of the fuel formulations compared with the design values are presented, as well as results from standard analyses, such as heating value, viscosity and density. Cetane number characterizations were accomplished by using both the engine method and the Ignition Quality Tester (IQT™) apparatus.
Technical Paper

ULSD and B20 Hydrocarbon Impacts on EGR Cooler Performance and Degradation

2009-11-02
2009-01-2802
Exhaust gas recirculation (EGR) cooler fouling has emerged as an important issue in diesel engine development. Uncertainty about the level of impact that fuel chemistry may have upon this issue has resulted in a need to investigate the cooler fouling process with emerging non-traditional fuel sources to gage their impact on the process. This study reports experiments using both ultra-low sulfur diesel (ULSD) and 20% biodiesel (B20) at elevated exhaust hydrocarbon conditions to investigate the EGR cooler fouling process. The results show that there is little difference between the degradation in cooler effectiveness for ULSD and B20 at identical conditions. At lower coolant temperatures, B20 exhibits elevated organic fractions in the deposits compared with ULSD, but this does not appear to lead to incremental performance degradation under the conditions studied.
Technical Paper

Experimental Investigation of the Effects of Fuel Characteristics on High Efficiency Clean Combustion in a Light-Duty Diesel Engine

2009-11-02
2009-01-2669
An experimental study was performed to understand fuel property effects on low temperature combustion (LTC) processes in a light-duty diesel engine. These types of combustion modes are often collectively referred to as high efficiency clean combustion (HECC). A statistically designed set of research fuels, the Fuels for Advanced Combustion Engines (FACE), were used for this study. Engine conditions of 1500rpm, 2.6bar BMEP was chosen for investigating fuel property effects on HECC operation in a GM 1.9-L common rail diesel engine. The FACE fuel matrix includes nine combinations of fuel properties including cetane number (30 to 55), aromatic content (20 to 45%), and 90% distillation temperature (270 to 340°C). HECC operation was achieved with high levels of exhaust gas recirculation (EGR) and adjusting injection parameters, such as higher fuel rail pressure and single injection event, which is also known as premixed charge compression ignition (PCCI) combustion.
X