Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

The Effect of Micro-Geometry and Load on Helical Gear Noise Excitations

2005-05-16
2005-01-2295
The prediction of gear noise may normally be treated as a classical source - path - receiver problem. Usually, the excitation occurs in the gear mesh and the path includes the transmission of forces and motions through the shafts and bearings to the gear housing, which in turn radiates the noise. This paper focuses on the source aspect of the problem and identifies the major sources of gear whine noise and develops a metric that incorporates these sources into a single equation. An example then shows how the micro-topography of a gear set affects several of the excitation components. A computer program that predicts the load distribution and motion errors of a gear pair is used for the analyses.
Technical Paper

An Investigation of Shaft Dynamic Effects on Gear Vibration and Noise Excitations

2003-05-05
2003-01-1491
Transmission error has long been identified to be the main exciter of gear whine noise. This research effort seeks to investigate the mechanisms and principal controlling factors that affect the actual noise generation from a typical gearbox housing due to transmission error excitations. The insight gained is expected to help in identifying possible noise control procedures in typical gearing applications. The example gearbox of this paper is an aircraft auxiliary-drive idler gearbox run at low load so that transmission error is the primary mesh excitation. A limited set of dynamic noise and vibration data are collected in transient speed run-ups. A contact-mechanics gear-tooth model is used to predict the static transmission error at each mesh. A finite-element model of the shafting that incorporates complex shaft and bearing data is used to predict the shaft dynamics with the static transmission error at the gear mesh(es) as the sole excitation.
Technical Paper

Vibro-Acoustic Effects of Friction in Gears: An Experimental Investigation

2001-04-30
2001-01-1516
Amongst various sources of noise and vibrations in gear meshing, transmission error and sliding friction between the teeth are two major constituents. As the operating conditions are altered, the magnitude of these two excitations is affected differently and either of them can become the dominant factor. In this article, an experimental investigation is presented for identifying the friction excitation and to study the influence of tribological parameters on the radiated sound. Since both friction and transmission error excitations occur at the same fundamental period of one meshing cycle, they result in similar spectral contents in the dynamic response. Hence specific methods like the variation of parameters are designed in order to distinguish between the individual vibration and noise sources. The two main tribological parameters that are varied are the lubricant and the surface finish characteristics of gear teeth.
Technical Paper

Manufacturing Robustness Analysis of the Noise Excitation and Design of Alternative Gear Sets

2001-04-30
2001-01-1417
Transmission errors, axial shuttling forces, and friction result in bearing forces that serve as the major excitations of gear noise. This paper focuses on a comparison of these factors, as well as stresses for two designs: one being an original product design and the second being a slightly finer pitch design that has the equivalent design life of the original design. The original gear design shows higher transmission errors and bearing forces, thus creating more noise than the finer pitch gear pair. It was noted from testing that no matter how the profile and lead modifications to the original coarse pitch gear pair were changed, it was difficult to make it quieter. On the other hand, no matter how the profile and lead modifications to the finer pitch gear pair were changed, it was difficult to make it noisy. This paper shows the effects of different profiles and leads for the gear pairs on noise excitations and stresses.
Technical Paper

Methods for Researching Gear Whine in Automotive Transaxles

1999-05-17
1999-01-1768
In this paper, we discuss methods used to investigate a clearly audible gear whine problem in a modern automobile. Currently available PC-based computer software, coupled with more traditional engineering tools, such as spectrum analyzers, are employed to efficiently observe noise and vibration phenomena. Jury evaluations are conducted, using in-vehicle noise data, to rank actual gear whine levels. Additional jury studies using synthesized gear whine help us further understand listener preferences. Unloaded gear transmission error testing is explored as a means of predicting gear whine levels under light loads, such as those seen during highway cruising. We finally correlate many results to better understand the source and paths of the gear noise, and make recommendations for further exploration of this type of problem.
Technical Paper

Case History: Engine Timing Gear Noise Reduction

1999-05-17
1999-01-1716
This paper describes the procedures used to reduce the tonal noise of a class eight truck engine timing gear train that was initially found to be objectionable under idle operating conditions. Initial measurements showed that the objectionable sounds were related to the fundamental gear mesh frequency, and its second and third harmonics. Experimental and computational procedures used to study and trouble-shoot the problem include vibration and sound measurements, transmission error analysis of the gears under light load condition, and a dynamic analysis of the drive system. Detail applications of these techniques are described in this paper.
Technical Paper

NVH Research Facilities at The Ohio State University: Existing Facilities and Envisioned Enhancements

1997-05-20
971899
The automotive NVH research infrastructure at Ohio State includes the Center for Automotive Research, the Acoustics and Dynamics Laboratory, and the Gear Dynamics and Gear Noise Research Laboratory. This paper describes the facilities of these laboratories. Two unique existing facilities, namely the transmission error measurement of gears and a laboratory for the experimental measurement of engine breathing systems, will be emphasized. Also covered are the enhancements that are envisioned through a recent grant from the Ohio Board of Regents.
Technical Paper

Dynamic Analysis of Layshaft Gears in Automotive Transmission

1997-05-20
971964
In this paper, we will present parametric results of performing dynamic analysis of layshaft gear trains typically used in automotive transmissions with emphasis on the vibratory response due to transmission error excitation. A three-dimensional multiple degrees of freedom lumped parameter dynamic model of a generic layshaft type geared rotor system (with three parallel rotating shafts coupled by two sets of gear pairs) has been formulated analytically. The model includes the effects of both rotational and translational displacements of each gears, and bounce and pitch motions of the counter-shaft. The natural frequencies and mode shapes are computed numerically by solving an eigenvalue problem derived from applying harmonic solutions to the equations of motion. The complete set of mode shapes are then used in forced response calculations based on the modal expansion method to predict gear accelerations, dynamic transmission errors, mesh force and bearing loads.
Technical Paper

Analysis of Off-Line of Action Contact at the Tips of Gear Teeth

1994-09-01
941761
A mathematical basis for predicting loaded off-line of action contact at the tips of undermodified gear teeth is discussed. Two methods of solving the contact problem, using a modified simplex algorithm, are used to predict the load distribution. The methods differ in the compliance matrix formulation and the way they search for contact. The first method uses a tapered plate model and the second method uses a finite element model. The effects of off-line of action contact on load sharing, effective contact ratio and motion curves are shown.
X