Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Weight Effect on Emissions and Fuel Consumption from Diesel and Lean-Burn Natural Gas Transit Buses

2007-08-05
2007-01-3626
Transit agencies across the United States operate bus fleets primarily powered by diesel, natural gas, and hybrid drive systems. Passenger loading affects the power demanded from the engine, which in turn affects distance-specific emissions and fuel consumption. Analysis shows that the nature of bus activity, taking into account the idle time, tire rolling resistance, wind drag, and acceleration energy, influences the way in which passenger load impacts emissions. Emissions performance and fuel consumption from diesel and natural gas powered buses were characterized by the West Virginia University (WVU) Transportable Emissions Testing Laboratory. A comparison matrix for all three bus technologies included three common driving cycles (the Braunschweig Cycle, the OCTA Cycle, and the ADEME-RATP Paris Cycle). Each bus was tested at three different passenger loading conditions (empty weight, half weight, and full weight).
Technical Paper

Neural Network Modeling of Emissions from Medium-Duty Vehicles Operating on Fisher-Tropsch Synthetic Fuel

2007-04-16
2007-01-1080
West Virginia University has conducted research to characterize the emissions from medium-duty vehicles operating on Fischer-Tropsch synthetic gas-to-liquid compression ignition fuel. The West Virginia University Transportable Heavy Vehicle Emissions Testing Laboratory was used to collect data for gaseous emissions (carbon dioxide, carbon monoxide, oxides of nitrogen, and total hydrocarbon) while the vehicles were exercised through a representative driving schedule, the New York City Bus Cycle (NYCB). Artificial neural networks were used to model emissions to enhance the capabilities of computer-based vehicle operation simulators. This modeling process is presented in this paper. Vehicle velocity, acceleration, torque at rear axel, and exhaust temperature were used as inputs to the neural networks. For each of the four gaseous emissions considered, one set of training data and one set of validating data were used, both based on the New York City Bus Cycle.
Technical Paper

Effects of Average Driving Cycle Speed on Lean-Burn Natural Gas Bus Emissions and Fuel Economy

2007-01-23
2007-01-0054
Although diesel engines still power most of the heavy-duty transit buses in the United States, many major cities are also operating fleets where a significant percentage of buses is powered by lean-burn natural gas engines. Emissions from these buses are often expressed in distance-specific units of grams per mile (g/mile) or grams per kilometer (g/km), but the driving cycle or route employed during emissions measurement has a strong influence on the reported results. A driving cycle that demands less energy per unit distance than others results in higher fuel economy and lower distance-specific oxides of nitrogen emissions. In addition to energy per unit distance, the degree to which the driving cycle is transient in nature can also affect emissions.
Technical Paper

Parametric Study of 2007 Standard Heavy-Duty Diesel Engine Particulate Matter Sampling System

2007-01-23
2007-01-0060
Heavy-Duty Diesel (HDD) engines' particulate matter (PM) emissions are most often measured quantitatively by weighing filters that collect diluted exhaust samples pre- and post-test. PM sampling systems that dilute exhaust gas and collect PM samples have different effects on measured PM data. Those effects usually contribute to inter-laboratory variance. The U.S. Environmental Protection Agency (EPA)'s 2007 PM emission measurement regulations for the test of HDD engines should reduce variability, but must also cope with PM mass that is an order of magnitude lower than legacy engine testing. To support the design of a 2007 US standard HDD PM emission sampling system, a parametric study based on a systematic Simulink® model was performed. This model acted as an auxiliary design tool when setting up a new 2007 HDD PM emission sampling system in a heavy-duty test cell at West Virginia University (WVU). It was also designed to provide assistance in post-test data processing.
Technical Paper

Regulated Emissions from Heavy Heavy-Duty Diesel Trucks Operating in the South Coast Air Basin

2006-10-16
2006-01-3395
Heavy duty diesel vehicle (HDDV) emissions are known to affect air quality, but few studies have quantified the real-world contribution to the inventory. The objective of this study was to provide data that may enable ambient emissions investigators to m,odel the air quality more accurately. The 25 vehicles reported in this paper are from the first phase of a program to determine representative regulated emissions from Heavy Heavy-Duty Diesel Trucks (HHDDT) operating in Southern California. Emissions data were gathered using a chassis dynamometer, full flow dilution tunnel, and research grade analyzers. The subject program employed two truck test weights and four new test modes (one was idle operation), in addition to the Urban Dynamometer Driving Schedule (UDDS), and the AC50/80 cycle. The reason for such a broad test cycle scope was to determine thoroughly how HHDDT emissions are influenced by operating cycle to improve accuracy of models.
Technical Paper

Correlation Study of PM and NOx for Heavy-Duty Vehicles Across Multiple Drive Schedules

2004-10-25
2004-01-3022
When heavy-duty truck emissions are expressed in distance-specific units (such as g/mile), the values may depend strongly on the nature of the test cycle or schedule. Prior studies have compared emissions gained using different schedules and have proposed techniques for translating emissions factor rates between schedules. This paper reviews emissions data from the 5-mode CARB HHDDT Schedule, UDDS Schedule, and a steady-state cycle (AC5080), with reference to each other. NOX and PM emissions are the two components of emissions which are reviewed. A heavy-duty chassis dynamometer was used for emissions characterization along with a full scale dilution tunnel. The vehicle test weights were simulated at 30,000 lbs, 56,000 lbs, and 66,000 lbs. For each vehicle, average data from one mode or cycle have been compared with average data for a different mode or cycle.
Technical Paper

Creation and Evaluation of a Medium Heavy-Duty Truck Test Cycle

2003-10-27
2003-01-3284
The California Air Resources Board (ARB) developed a Medium Heavy-Duty Truck (MHDT) schedule by selecting and joining microtrips from real-world MHDT. The MHDT consisted of three modes; namely, a Lower Speed Transient, a Higher Speed Transient, and a Cruise mode. The maximum speeds of these modes were 28.9, 58.2 and 66.0 mph, respectively. Each mode represented statistically selected truck behavior patterns in California. The MHDT is intended to be applied to emissions characterization of trucks (14,001 to 33,000lb gross vehicle weight) exercised on a chassis dynamometer. This paper presents the creation of the MHDT and an examination of repeatability of emissions data from MHDT driven through this schedule. Two trucks were procured to acquire data using the MHDT schedule. The first, a GMC truck with an 8.2-liter Isuzu engine and a standard transmission, was tested at laden weight (90% GVW, 17,550lb) and at unladen weight (50% GVW, 9,750lb).
Technical Paper

Emissions from Diesel-Fueled Heavy-Duty Vehicles in Southern California

2003-05-19
2003-01-1901
Few real-world data exist to describe the contribution of diesel vehicles to the emissions inventory, although it is widely acknowledged that diesel vehicles are a significant contributor to oxides of nitrogen (NOx) and particulate matter (PM) in Southern California. New data were acquired during the Gasoline/Diesel PM Split Study, designed to collect emissions data for source profiling of PM emissions from diesel- and gasoline-powered engines in the South Coast (Los Angeles) Air Basin in 2001. Regulated gases, PM and carbon dioxide (CO2) were measured from 34 diesel vehicles operating in the Southern California area. Two were transit buses, 16 were trucks over 33,000 lbs. in weight, 8 were 14,001 lbs. to 33,000 lbs. in weight and 8 were under 14,001 lbs. in weight. The vehicles were also grouped by model year for recruiting and data analysis.
Technical Paper

Measurement of Brake-specific NOX Emissions using Zirconia Sensors for In-use, On-board Heavy-duty Vehicle Applications

2002-05-06
2002-01-1755
Emissions tests for heavy -duty diesel-fueled engines and vehicles are normally performed using engine dynamometers and chassis dynamometers, respectively, with laboratory grade gaseous concentration measurement analyzers and supporting test equipment. However, a considerable effort has been recently expended on developing in-use, on-board tools to measure brake-specific emissions from heavy -duty vehicles with the highest degree of accuracy and precision. This alternative testing methodology would supplement the emissions data that is collected from engine and chassis dynamometer tests. The on-board emissions testing methodology entails actively recording emissions and vehicle operating parameters (engine speed and load, vehicle speed etc.) from vehicles while they are operating on the road. This paper focuses on in-use measurements of NOX with zirconium oxide sensors and other portable NOX detectors.
Technical Paper

Research Approach for Aging and Evaluating Diesel Lean-NOx Catalysts

2001-09-24
2001-01-3620
The goal of the Diesel Emissions Control-Sulfur Effects (DECSE) program was to determine the impact of diesel fuel sulfur levels on emissions control devices that could lower emissions of oxides of nitrogen (NOX) and particulate matter (PM) from on-highway trucks and buses. West Virginia University (WVU) performed evaluations of lean-NOx catalysts to determine the effects of fuel sulfur content on emissions reduction efficiency and catalyst durability in the first 250 hours of operation. A Cummins ISM370 engine (10.8 liter, 370 horsepower), typical of heavy -duty truck applications, was utilized to evaluate high-temperature lean-NOX catalyst while a Navistar T444E (7.3 liter, 210 horsepower), typical of medium-duty applications, was used to evaluate low-temperature catalyst. Catalysts were evaluated periodically during the first 250 hours of exposure to exhaust from engines operated on 3ppm, 30ppm, 150ppm and 350ppm sulfur content diesel fuel.
Technical Paper

Measuring Diesel Emissions with a Split Exhaust Configuration

2001-05-07
2001-01-1949
West Virginia University evaluated diesel oxidation catalysts (DOC) and lean-NOX catalysts as part of Diesel Emissions Control-Sulfur Effects (DECSE) project. In order to perform thermal aging of the DOC and lean-NOX catalysts simultaneously and economically, each catalyst was sized to accommodate half of the engine exhaust flow. Simultaneous catalyst aging was then achieved by splitting the engine exhaust into two streams such that approximately half of the total exhaust flowed through the DOC and half through the lean-NOX catalyst. This necessitated splitting the engine exhaust into two streams during emissions measurements. Throttling valves installed in each branch of the split exhaust were adjusted so that approximately half the engine exhaust passed though the active catalyst under evaluation and into a full flow dilution tunnel for emissions measurement.
Technical Paper

Class 8 Trucks Operating On Ultra-Low Sulfur Diesel With Particulate Filter Systems: Regulated Emissions

2000-10-16
2000-01-2815
Emissions from heavy-duty vehicles may be reduced through the introduction of clean diesel formulations, and through the use of catalyzed particulate matter filters that can enjoy increased longevity and performance if ultra-low sulfur diesel is used. Twenty over-the-road tractors with Detroit Diesel Series 60 engines were selected for this study. Five trucks were operated on California (CA) specification diesel (CARB), five were operated on ARCO (now BP Amoco) EC diesel (ECD), five were operated on ARCO ECD with a Johnson-Matthey Continuously Regenerating Technology (CRT) filter and five were operated on ARCO ECD with an Engelhard Diesel Particulate Filter (DPX). The truck emissions were characterized using a transportable chassis dynamometer, full-scale dilution tunnel, research grade gas analyzers and filters for particulate matter (PM) mass collection. Two test schedules, the 5 mile route and the city-suburban (heavy vehicle) route (CSR), were employed.
Technical Paper

Hybrid Diesel-Electric Heavy Duty Bus Emissions: Benefits Of Regeneration And Need For State Of Charge Correction

2000-10-16
2000-01-2955
Hybrid diesel electric buses offer the advantage of superior fuel economy through use of regenerative braking and lowered transient emissions by reducing the need of the engine to follow load as closely as in a conventional bus. With the support of the Department of Energy (DOE), five Lockheed Martin-Orion hybrid diesel-electric buses were operated on the West Virginia University Transportable Laboratory in Brooklyn, New York. The buses were exercised through a new cycle, termed the Manhattan cycle, that was representative of today's bus use as well as the accepted Central Business District Cycle and New York Bus Cycle. Emissions data were corrected for the state of charge of the batteries. The emissions can be expressed in units of grams/mile, grams/axle hp-hr and grams/gallon fuel. The role of improved fuel economy in reducing oxides of nitrogen relative to conventional automatic buses is evident in the data.
Technical Paper

Chassis Dynamometer Emission Measurements from Trucks and Buses using Dual-Fuel Natural Gas Engines

1999-10-25
1999-01-3525
Emissions from trucks and buses equipped with Caterpillar dual-fuel natural gas (DFNG) engines were measured at two chassis dynamometer facilities: the West Virginia University (WVU) Transportable Emissions Laboratory and the Los Angeles Metropolitan Transportation Authority (LA MTA). Emissions were measured over four different driving cycles. The average emissions from the trucks and buses using DFNG engines operating in dual-fuel mode showed the same trends in all tests - reduced oxides of nitrogen (NOx) and particulate matter (PM) emissions and increased hydrocarbon and carbon monoxide (CO) emissions - when compared to similar diesel trucks and buses. The extent of NOx reduction was dependent on the type of test cycle used.
Technical Paper

Emissions from Buses with DDC 6V92 Engines Using Synthetic Diesel Fuel

1999-05-03
1999-01-1512
Synthetic diesel fuel can be made from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, synthetic diesel fuels may also be economically competitive with California diesel fuel if produced in large volumes. Previous engine laboratory and field tests using a heavy-duty chassis dynamometer indicate that synthetic diesel fuel made using the Fischer-Tropsch (F-T) catalytic conversion process is a promising alternative fuel because it can be used in unmodified diesel engines, and can reduce exhaust emissions substantially. The objective of this study was a preliminary assessment of the emissions from older model transit operated on Mossgas synthetic diesel fuel. The study compared emissions from transit buses operating on Federal no. 2 Diesel fuel, Mossgas synthetic diesel (MGSD), and a 50/50 blend of the two fuels.
Technical Paper

Diesel and CNG Transit Bus Emissions Characterization by Two Chassis Dynamometer Laboratories: Results and Issues

1999-05-03
1999-01-1469
Emissions of six 32 passenger transit buses were characterized using one of the West Virginia University (WVU) Transportable Heavy Duty Emissions Testing Laboratories, and the fixed base chassis dynamometer at the Colorado Institute for Fuels and High Altitude Engine Research (CIFER). Three of the buses were powered with 1997 ISB 5.9 liter Cummins diesel engines, and three were powered with the 1997 5.9 liter Cummins natural gas (NG) counterpart. The NG engines were LEV certified. Objectives were to contrast the emissions performance of the diesel and NG units, and to compare results from the two laboratories. Both laboratories found that oxides of nitrogen and particulate matter (PM) emissions were substantially lower for the natural gas buses than for the diesel buses. It was observed that by varying the rapidity of pedal movement during accelerations in the Central Business District cycle (CBD), CO and PM emissions from the diesel buses could be varied by a factor of three or more.
Technical Paper

Models for Predicting Transient Heavy Duty Vehicle Emissions

1998-10-19
982652
Heavy duty engine emissions represent a significant portion of the mobile source emissions inventory, especially with respect to oxides of nitrogen (NOx) emissions. West Virginia University (WVU) has developed an extensive database of continuous transient gaseous emission levels from a wide range of heavy duty diesel vehicles in field operation. This database was built using the WVU Transportable Heavy Duty Vehicle Emission Testing Laboratories. Transient driving cycles used to generate the continuous data were the Central Business District cycle (CBD), 5-peak WVU test cycle, WVU 5-mile route, and the New York City Bus cycle (NYCB). This paper discusses continuous emissions data from a transit bus and a tractor truck, each of them powered by a Detroit Diesel 6V-92 engine. Simple correlational models were developed to relate instantaneous emissions to instantaneous power at the drivewheels.
Technical Paper

Emissions from Trucks using Fischer-Tropsch Diesel Fuel

1998-10-19
982526
The Fischer-Tropsch (F-T) catalytic conversion process can be used to synthesize diesel fuels from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, Fischer-Tropsch diesel fuels may also be economically competitive with California diesel fuel if produced in large volumes. An overview of Fischer-Tropsch diesel fuel production and engine emissions testing is presented. Previous engine laboratory tests indicate that F-T diesel is a promising alternative fuel because it can be used in unmodified diesel engines, and substantial exhaust emissions reductions can be realized. The authors have performed preliminary tests to assess the real-world performance of F-T diesel fuels in heavy-duty trucks. Seven White-GMC Class 8 trucks equipped with Caterpillar 10.3 liter engines were tested using F-T diesel fuel.
Technical Paper

A Long Term Field Emissions Study of Natural Gas Fueled Refuse Haulers in New York City

1998-10-19
982456
New York City Department of Sanitation has operated natural gas fueled refuse haulers in a pilot study: a major goal of this study was to compare the emissions from these natural gas vehicles with their diesel counterparts. The vehicles were tandem axle trucks with GVW (gross vehicle weight) rating of 69,897 pounds. The primary use of these vehicles was for street collection and transporting the collected refuse to a landfill. West Virginia University Transportable Heavy Duty Emissions Testing Laboratories have been engaged in monitoring the tailpipe emissions from these trucks for seven-years. In the later years of testing the hydrocarbons were speciated for non-methane and methane components. Six of these vehicles employed the older technology (mechanical mixer) Cummins L-10 lean burn natural gas engines.
Technical Paper

Emissions Testing of a Hybrid Fuel Cell Bus

1998-02-23
980680
The fuel cell bus program at Georgetown University (GU) has directed the operational development and testing of three hybrid fuel cell powered buses for transit operation. These are the world's first liquid-fueled, fuel cell powered road vehicles. This paper describes the emissions testing of one of these buses on a heavy duty chassis dynamometer at West Virginia University (WVU). The tested bus was driven by a 120 kW DC motor and utilized a 50 kW phosphoric acid fuel cell (PAFC) as an energy source with a 100 kW battery for supplemental power. A methanol/water fuel mixture was converted by a steam reformer to a hydrogen rich gas mixture for use in a fuel cell stack. Emissions from the reformer, fuel cell stack and startup burner were monitored for both transient and steady-state operation.
X