Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

An Illustrative Look at Energy Flow through Hybrid Powertrains for Design and Analysis

2015-04-14
2015-01-1231
Improving fuel economy and overall vehicle emissions are very important in today's society with strict new regulations throughout the world. To help in the education process for the next generation of design engineers, this paper seeks to define a powertrain model created and developed to help users understand the basics behind hybrid vehicles and the effects of these advanced technologies. One of the main goals of this research is to maintain a simplified approach to model development. The 1 Hz model described within this work aims to allow energy to be simply and understandably traced through a hybrid powertrain. Through the use of a “backwards” energy tracking method, demand for a drive cycle is found, and, after tracing the energy demand through each powertrain component, the resulting fuel to meet vehicle demand and associated powertrain losses is found.
Technical Paper

Vehicle Inertia Impact on Fuel Consumption of Conventional and Hybrid Electric Vehicles Using Acceleration and Coast Driving Strategy

2009-04-20
2009-01-1322
In the past few years, the price of petroleum based fuels, especially vehicle fuels such as gasoline and diesel, have been increasing at a significant rate. Consequently, there is much more consumer interest related to reducing fuel consumption of conventional and hybrid electric vehicles (HEVs). The “pulse and glide” (PnG) driving strategy is first applied to a conventional vehicle to quantify the fuel consumption benefits when compared to steady state speed (cruising) conditions over the same time and distance. Then an HEV is modeled and tested to investigate if a hybrid system can further reduce fuel consumption with the proposed strategy. Note that the HEV used in this study has the advantage that the engine can be automatically shut off below a certain speed (∼40 mph, 64 kph) at low loads, however a driver must shut off the engine manually in a conventional vehicle to apply this driving strategy.
Technical Paper

Design and Development Process for the Equinox REVLSE E85 Hybrid Electric Vehicle

2006-04-03
2006-01-0514
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2005 - 2007 Challenge X advanced technology vehicle competition series, sponsored by General Motors Corporation, the U.S. Department of Energy, and Argonne National Lab. This report documents the Equinox REVLSE (Renewable Energy Vehicle, the Larsen Special Edition) design and how it meets the Challenge X goals. The design process, Vehicle Technical Specifications (VTS), system components, control strategy, model validation, vehicle balance, and the Challenge X Vehicle Development Process (XVDP) are defined and explained. The selected Split Parallel Architecture (SPA) E85-fueled hybrid vehicle powertrain design can meet the performance, emissions and fuel economy goals of Challenge X, while reducing petroleum use by 80 %.
Technical Paper

Cold Start Fuel Economy and Power Limitations for a PEM Fuel Cell Vehicle

2003-03-03
2003-01-0422
Fuel cells are being considered for transportation primarily because they have the ability to increase vehicle energy efficiency and significantly reduce or eliminate tailpipe emissions. A proton exchange membrane fuel cell is an electrochemical device for which the operational characteristics depend heavily upon temperature. Thus, it is important to know how the thermal design of the system affects the performance and efficiency of a fuel cell vehicle. More specifically, this work addresses issues of the initial thermal transient known to the automotive community as “cold start” effects for a direct hydrogen fuel cell system. Cold start effects play a significant role in power limitations in a fuel cell vehicle, and may require hybridization (batteries) to supplement available power. The results include a comparison of cold-start and hot-start fuel cell power, efficiency and fuel economy for a hybrid fuel cell vehicle.
Technical Paper

Degree of Hybridization Modeling of a Hydrogen Fuel Cell PNGV-Class Vehicle

2002-06-03
2002-01-1945
An ADVISOR model of a PNGV-class (80 mpg) vehicle with a fuel cell / battery hybrid electric drivetrain is developed using validated component models. The vehicle mass, electric traction drive, and total net power available from fuel cells plus batteries are held fixed. Results are presented for a range of fuel cell size from zero (pure battery EV) up to a pure fuel cell vehicle (no battery storage). The fuel economy results show that some degree of hybridization is beneficial, and that there is a complex interaction between the drive cycle dynamics, component efficiencies, and the control strategy.
Technical Paper

Design and Integration Challenges for a Fuel Cell Hybrid Electric Sport Utility Vehicle

2002-03-04
2002-01-0095
Large sport utility vehicles have relatively low fuel economy, and thus a large potential for improvement. One way to improve the vehicle efficiency is by converting the drivetrain to hydrogen fuel cell power. Virginia Tech has designed a fuel cell hybrid electric vehicle based on converting a Chevrolet Suburban into an environmentally friendly truck. The truck has two AC induction drive motors, regenerative braking to capture kinetic energy, a compressed hydrogen fuel storage system, and a lead acid battery pack for storing energy. The fuel cell hybrid electric vehicle emits only water from the vehicle. The fuel cell stacks have been sized to make the 24 mpg (gasoline equivalent) vehicle charge sustaining, while maintaining the performance of the stock vehicle. The design and integration challenges of implementing these systems in the vehicle are described.
Technical Paper

Degree of Hybridization Modeling of a Fuel Cell Hybrid Electric Sport Utility Vehicle

2001-03-05
2001-01-0236
An ADVISOR model of a large sport utility vehicle with a fuel cell / battery hybrid electric drivetrain is developed using validated component models. The vehicle mass, electric traction drive, and total net power available from fuel cells plus batteries are held fixed. Results are presented for a range of fuel cell size from zero (pure battery EV) up to a pure fuel cell vehicle (no battery storage). The fuel economy results show that some degree of hybridization is beneficial, and that there is a complex interaction between the drive cycle dynamics, component efficiencies, and the control strategy.
Technical Paper

Integration of Fuel Cell Technology into a Hybrid Electric Vehicle

2000-03-06
2000-01-0592
The Virginia Tech Hybrid Electric Vehicle Team (HEVT) has integrated a proton exchange membrane (PEM) fuel cell as the auxiliary power unit (APU) of a series hybrid design to produce a highly efficient zero-emission vehicle (ZEV). This design is implemented in a 1997 Chevrolet Lumina sedan, renamed ANIMUL H2, using an efficient AC induction drivetrain, regenerative braking, compressed hydrogen fuel storage, and an advance lead-acid battery pack for peak power load leveling. The fuel cell is sized to supply the average power demand and to sustain the battery pack state-of-charge (SOC) within a 40-80% window. To optimize system efficiency, the fuel cell is driven with a load-following control strategy. The vehicle is predicted to achieve a combined city/highway fuel economy of 4.3 L/100 km or 51 mpgge (miles per gallon gasoline equivalent).
Technical Paper

Systems Integration and Performance Issues in a Fuel Cell Hybrid Electric Vehicle

2000-03-06
2000-01-0376
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) has integrated a proton exchange membrane fuel cell as the auxiliary power unit of a series hybrid design to produce a highly efficient zero-emission vehicle. A 1997 Chevrolet Lumina sedan, renamed ANIMUL H2, carries this advanced powertrain, using an efficient AC induction drivetrain, regenerative braking, compressed hydrogen fuel storage, and an advance lead-acid battery pack for peak power load leveling. The fuel cell supplies the average power demand and to sustain the battery pack state-of-charge within a 40-80% window. To optimize system efficiency, a load-following strategy controls the fuel cell power level. The vehicle weighed 2000kg (4400lb) and achieved a combined city/highway fuel economy of 9L/100 km or 26 mpgge (miles per gallon gasoline equivalent).
Technical Paper

Validation of ADVISOR as a Simulation Tool for a Series Hybrid Electric Vehicle

1998-02-23
981133
One of the most widely used computer simulation tools for hybrid electric vehicles (HEVs) is the ADvanced VehIcle SimulatOR (ADVISOR) developed by the National Renewable Energy Laboratory. The capability to quickly perform parametric and sensitivity studies for specific vehicles is a unique and invaluable feature of ADVISOR. However, no simulation tool is complete without being validated against measured vehicle data to insure the reliability of its predictions. This paper details the validation of ADVISOR using data from the Virginia Tech FutureCar Challenge Lumina, a series HEV. The modeling process is discussed in detail for each of the major components of the hybrid system: transmission; electric motor and inverter; auxiliary power unit (fuel and emissions); batteries; and miscellaneous vehicle parameters. The integration of these components into the overall ADVISOR model is also described. The results of the ADVISOR simulations are then explained.
X