Refine Your Search

Topic

Search Results

Standard

The Preparation and Use of Thermocouples for Aircraft Gas Turbine Engines

2022-09-14
CURRENT
AIR46C
This SAE Aerospace Information Report (AIR) reviews the precautions that must be taken and the corrections which must be evaluated and applied if the experimental error in measuring the temperature of a hot gas stream with a thermocouple is to be kept to a practicable minimum. Discussions will focus on Type K thermocouples, as defined in National Institute of Standards and Technology (NIST) Monograph 175 as Type K, nickel-chromium (Kp) alloy versus nickel-aluminium (Kn) alloy (or nickel-silicon alloy) thermocouples. However, the majority of the content is relevant to any thermocouple type used in gas turbine applications.
Standard

Determination of Costs and Benefits from Implementing an Engine Health Management System

2020-04-28
CURRENT
ARP4176A
This ARP provides an insight into how to approach a cost benefit analysis (CBA) to determine the return on investment (ROI) that would result from implementing a propulsion Prognostics and Health Management (PHM) system on an air vehicle. It describes the complexity of features that can be considered in the analysis, the different tools and approaches for conducting a CBA and differentiates between military and commercial applications. This document is intended to help those who might not necessarily have a deep technical understanding or familiarity with PHM systems but want to either quantify or understand the economic benefits (i.e., the value proposition) that a PHM system could provide.
Standard

Recommended Ice Bath for Reference Junctions

2018-05-03
CURRENT
ARP691
The ice bath recommended herein is similar to that described in SAE AIR 46.* Some material not presented in AIR 46, including preferred dimensions, has been added.
Standard

A Methodology for Quantifying the Performance of an Engine Monitoring System

2017-10-13
HISTORICAL
AIR4985
The purpose of this SAE Aerospace Information Report (AIR) is to present a quantitative approach for evaluating the performance and capabilities of an Engine Monitoring System (EMS). The value of such a methodology is in providing a systematic means to accomplish the following: 1 Determine the impact of an EMS on key engine supportability indices such as Fault Detection Rate, Fault Isolation Rate, Mean Time to Diagnose, In-flight Shutdowns (IFSD), Mission Aborts, and Unscheduled Engine Removals (UERs). 2 Facilitate trade studies during the design process in order to compare performance versus cost for various EMS design strategies, and 3 Define a “common language” for specifying EMS requirements and the design features of an EMS in order to reduce ambiguity and, therefore, enhance consistency between specification and implementation.
Standard

Engine Monitoring System Reliability and Validity

2016-11-12
CURRENT
AIR5120A
For Engine Monitoring Systems to meet their potential for improved safety and reduced operation and support costs, significant attention must be focused on their reliability and validity throughout the life cycle. This AIR will provide program managers, designers, developers and customers a concise reference of the activities, approaches and considerations for the development and verification of a highly reliable engine monitoring system. When applying the guidelines of this AIR it should be noted that engine monitoring systems physically or functionally integrated with the engine control system and/or performing functions that affect engine safety or are used to effect continued operation or return to service decisions shall be subject to the Type Investigation of the product in which they'll be incorporated and have to show compliance with the applicable airworthiness requirements as defined by the responsible Aviation Authority.
Standard

Prognostic Metrics for Engine Health Management Systems

2016-02-26
HISTORICAL
AIR5909
This SAE Aerospace Information Report (AIR) presents metrics for assessing the performance of prognostic algorithms applied for Engine Health Management (EHM) functions. The emphasis is entirely on prognostics and as such is intended to provide an extension and complement to such documents as AIR5871, which offers information and guidance on general prognostic approaches relevant to gas turbines, and AIR4985 which offers general metrics for evaluating diagnostic systems and their impact on engine health management activities.
Standard

A Guide to Aircraft Turbine Engine Vibration Monitoring Systems

2015-12-20
CURRENT
ARP1839
This Aerospace Recommended Practice (ARP) is a general overview of typical airborne engine vibration monitoring (EVM) systems applicable to fixed or rotary wing aircraft applications, with an emphasis on system design considerations. It describes EVM systems currently in use and future trends in EVM development. The broader scope of Health and Usage Monitoring Systems, (HUMS) is covered in SAE documents AS5391, AS5392, AS5393, AS5394, AS5395, AIR4174. This ARP also contains the essential elements of AS8054 which remain relevant and which have not been incorporated into Original Equipment Manufacturers (OEM) specifications.
Standard

Engine Monitoring System Reliability and Validity

2014-05-01
HISTORICAL
AIR5120
For Engine Monitoring Systems to meet their potential for improved safety and reduced operation and support costs, significant attention must be focused on their reliability and validity throughout the life cycle. This AIR will provide program managers, designers, developers and customers a concise reference of the activities, approaches and considerations for the development and verification of a highly reliable engine monitoring system. When applying the guidelines of this AIR it should be noted that engine monitoring systems physically or functionally integrated with the engine control system and/or performing functions that affect engine safety or are used to effect continued operation or return to service decisions shall be subject to the Type Investigation of the product in which they'll be incorporated and have to show compliance with the applicable airworthiness requirements as defined by the responsible Aviation Authority.
Standard

A Guide to Aircraft Turbine Engine Vibration Monitoring Systems

2014-05-01
HISTORICAL
AIR1839C
This Aerospace Information Report (AIR) is a general overview of typical airborne engine vibration monitoring (EVM) systems applicable to fixed or rotary wing aircraft applications, with an emphasis on system design considerations. It describes EVM systems currently in use and future trends in EVM development. The broader scope of Health and Usage Monitoring Systems, (HUMS ) is covered in SAE documents AS5391, AS5392, AS5393, AS5394, AS5395, AIR4174.
Standard

The Preparation and Use of Chromel-Alumel Thermocouples for Aircraft Gas Turbine Engines

2014-05-01
HISTORICAL
AIR46B
This SAE Aerospace Information Report (AIR) reviews the precautions that must be taken and the corrections which must be evaluated and applied if the experimental error in measuring the temperature of a hot gas stream with a thermocouple is to be kept to a practicable minimum. Discussions will focus on Type K thermocouples. These are defined in NBS Monograph 125 as nickel-chromium alloy versus nickel-aluminum alloy thermocouples.
Standard

Guide to Temperature Monitoring in Aircraft Gas Turbine Engines

2014-05-01
HISTORICAL
AIR1900A
This SAE Aerospace Information Report (AIR) provides an overview of temperature measurement for engine monitoring systems in various areas of aircraft gas turbine engines while focusing on current usage and methods, systems, selection criteria, and types of hardware. This document emphasizes temperature monitoring for diagnostics and condition monitoring purposes.
Standard

Guide to Engine Lubrication System Monitoring

2014-05-01
HISTORICAL
AIR1828B
The purpose of this SAE Aerospace Information Report (AIR) is to provide information and guidance for the selection and use of lubrication system monitoring methods. This AIR is intended to be used as a technical guide. It is not intended to be used as a legal document or standard. The scope of this document is limited to those inspection and analysis methods and devices that can be considered appropriate for routine maintenance.
Standard

Guidelines for Integrating Typical Engine Health Management Functions Within Aircraft Systems

2012-10-08
HISTORICAL
AIR4061B
SAE Aerospace Information Report (AIR) 4061 provides best practice guidelines for the integration of Engine Health Management (EHM) system functions within aircraft systems to include both its main engine(s) and any Auxiliary Power Unit(s) (APU). This document provides an overview of some of the functions EHM typically integrates, offers some system variations encountered with different aircraft, and suggests general considerations involved with integration. It presents a sample EHM parameter coverage matrix to show the types of parameters with which a typical EHM system might interface, offers insight into signal and data processing and retrieval, and offers a view of typical EHM parameter requirements by function. Where practical, this document delineates between military and commercial practices.
Standard

A Guide to Aircraft Power Train Monitoring

2008-06-04
HISTORICAL
AIR4174
The purpose of this SAE Aerospace Information Report (AIR) is to provide management, designers, and operators with information to assist them to decide what type of power train monitoring they desire. This document is to provide assistance in optimizing system complexity, performance and cost effectiveness. This document covers all power train elements from the point at which the gas generator energy is transferred to mechanical energy for propulsion purposes. The document covers engine power train components, their interfaces, transmissions, gearboxes, hanger bearings, shafting and associated rotating accessories, propellers and rotor systems as shown in Figure 1. This document addresses application for rotorcraft, turboprop, and propfan drive trains for both commercial and military aircraft.
Standard

A Guide to Aircraft Turbine Engine Vibration Monitoring Systems

2001-07-01
HISTORICAL
AIR1839B
This SAE Aerospace Information Report (AIR) is a general overview of typical airborne engine vibration monitoring (EVM) systems with an emphasis on system design considerations. It describes EVM systems currently in use and future trends in EVM development.
Standard

Guidelines for Integration of Engine Monitoring Functions With On-Board Aircraft Systems

1999-03-01
HISTORICAL
AIR4061A
This SAE Aerospace Information Report (AIR) discusses physical and functional integration of main engine and auxiliary power unit (APU) monitoring with other on-board systems. It includes General Considerations, Parameter Selection and Requirements, Signal Sources, Signal Conditioning, Data Processing, Data Storage, and Data Retrieval. Engine monitoring hardware and software are discussed so that they may be properly considered in an integrated design. Civil and military aviation applications are included and delineated where requirements differ.
X