Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Unregulated Emissions Characterization and Comparison for Two Off-Road Applications: A DPF and Non-DPF Engine

2022-03-29
2022-01-0587
As governmental agencies focus on low levels of the oxides of nitrogen (NOx) emissions compliance, new off-road applications are being reviewed for both regulated and unregulated emissions to understand the technological challenges and requirements for improved emissions performance. The California Air Resources Board (CARB) has declared its intention to pursue more stringent NOX standards for the off-road market. As part of this effort, CARB initiated a program to provide a detailed characterization of emissions meeting the current Tier 4 off-road standards [1]. This work focused on understanding the off-road market, establishing a current technology emissions baseline, and performing initial modeling on potential low NOx solutions. This paper discusses a part of this effort, focuses on the emissions characterization from two non-road engine platforms, and compares the emissions species from different approaches designed to meet Tier 4 emissions regulations.
Technical Paper

Dilute Measurement of Semi-Volatile Organic Compounds (SVOC) from a Heavy-Duty Diesel Engine

2017-10-08
2017-01-2393
Semi-volatile organic compounds (SVOC) are a group of compounds in engine exhaust that either form during combustion or are part of the fuel and lubricating oil. Since these compounds occur at very low concentrations in diesel engine exhaust, the methods for sampling, handling, and analyzing these compounds are critical to obtaining good results. An improved dilute exhaust sampling method was used for sampling and analyzing SVOC in engine exhaust, and this method was performed during transient engine operation. A total of 22 different SVOC were measured using a 2012 medium-duty diesel engine. This engine was equipped with a stock diesel oxidation catalyst (DOC), a diesel particulate filter (DPF), and a selective catalytic reduction (SCR) catalyst in series. Exhaust concentrations for SVOC were compared both with and without exhaust aftertreatment. Concentrations for the engine-out SVOC were significantly higher than with the aftertreatment present.
Technical Paper

Sampling System Investigation for the Determination of Semi-Volatile Organic Compounds (SVOC) Emissions From Engine Exhaust

2015-04-14
2015-01-1062
Semi-volatile organic compounds (SVOC) are a group of compounds that may form during combustion and/or are present in the unburned portion of the fuel and lubricating oil which ultimately become part of the exhaust. Many of these compounds are considered toxic or carcinogenic. Since these compounds are present in very low concentrations in diesel engine exhaust, the methods for sampling, handling, and analyzing these compounds are critical to obtaining representative and repeatable results. Engine testing is typically performed using a dilution tunnel. With a dilution tunnel, the collection of a representative sample is important. Experiments were performed with a modified EPA Method TO-9A to determine the equilibration time and other sampling parameters required for the measurement of SVOC in dilute exhaust. The results show that representative results can be obtained with this method.
Technical Paper

Comparison of Four Sampling Methods for Semi-volatile Organic Compounds in Gas Phase Diesel Engine Exhausts

2008-10-06
2008-01-2435
Newly designed Teflon® O-rings along with XAD-2 resin, stainless steel screens, lock rings, and glass cartridges were used to construct a new semi-volatile organic compounds (SVOC's) sampling device. This new sampling device allows direct and repeated sampling, extraction, and cleaning without ever having to be disassembled or reassembled. This new XAD-2 glass cartridge (X2) was compared with three other sampling methods namely Empore® membrane (EM), hexane impinger (HI), and “Cold Trap” (CT) for SVOC sampling efficiency on diesel engine exhaust emissions. The X2 method showed the highest overall SVOC collection efficiency, followed by the EM and HI methods. The X2 method has higher trapping efficiency for the oxygenates, polycyclic aromatic hydrocarbons (PAH's), alkyl cyclohexanes, and the alkyl aromatics than the other three SVOC sampling methods. The HI method has the highest trapping efficiency for the normal alkanes.
X