Refine Your Search

Topic

Search Results

Technical Paper

Attainment of High Thermal Efficiency and Near-zero Emissions by Optimizing Injected Spray Configuration in Direct Injection Hydrogen Engines

2019-12-19
2019-01-2306
The authors have previously proposed a plume ignition and combustion concept (i.e., PCC combustion), in which a hydrogen fuel is directly injected to the combustion chamber in the latter half of compression stroke and forms a richer mixture plume. By combusting the plume, both cooling losses and NOx formation are reduced. In this study, thermal efficiency was substantially improved and NOx formation was reduced with PCC combustion by optimizing such characteristics as direction and diameter of the jets in combination with combustion of lean mixture. Output power declined due to the lean mixture, however, was recovered by supercharging while keeping NOx emissions at the same level. Thermal efficiency was further improved by slightly re-optimizing the jet conditions.
Technical Paper

Numerical Investigation of Natural Gas-Diesel Dual Fuel Engine with End Gas Ignition

2018-04-03
2018-01-0199
The present study helps to understand the local combustion characteristics of PREmixed Mixture Ignition in the End-gas Region (PREMIER) combustion mode while using increasing amount of natural gas as a diesel substitute in conventional CI engine. In order to reduce NOx emission and diesel fuel consumption micro-pilot diesel injection in premixed natural gas-air mixture is a promising technique. New strategy has been employed to simulate dual fuel combustion which uses well established combustion models. Main focus of the simulation is at detection of an end gas ignition, and creating an unified modeling approach for dual fuel combustion. In this study G-equation flame propagation model is used with detailed chemistry in order to detect end-gas ignition in overall low temperature combustion. This combustion simulation model is validated using comparison with experimental data for dual fuel engine.
Technical Paper

Combustion Diagnostics Using Time-Series Analysis of Radical Emissions in a Practical Engine

2015-11-17
2015-32-0748
The objective of this study is to investigate the initial flame propagation characteristics of turbulent flame in an engine cylinder through time-series analysis of radical emissions. A spark plug with optical fiber was developed in this study. The plug sensor is M12 type that makes it possible to mount in practical engine. The spark plug sensor can detect radical emissions in time-resolved spectra through time-series spectroscopic measurement. In this spectra, some kinds of radical emissions such as OH*(306nm), CH*(431nm) and C2*(517nm) based on principle of chemiluminescence are observed. In this study, the spark plug sensor was applied to both compression-expansion machine (CEM) and practical engine. As a result of CEM with bottom viewed high-speed camera, three kinds of spectra could be detected.
Technical Paper

Effect of Bio-Gas Contents on SI Combustion for a Co-Generation Engine

2015-09-01
2015-01-1946
Bio-gas as an internal combustion (I.C.) engine fuel has many advantages such as cheaper fuel cost, low emission levels and especially the neutral recirculation loop of carbon dioxide, which is one of the principal factors in global warming. In this study, positive potentialities of bio-gas were investigated using a micro co-generation engine. The mixing ratio of methane (CH4) and carbon dioxide (CO2) was changed to simulate various types of bio-gases. Intake air and fuel flow rates were controlled to change the equivalence ratio. The engine load condition could be changed with the electric output power used. Base on the result, the higher CO2 content rate slowed down the engine speed in the same load condition and the combustion speed generally decreased under the same load condition with maintaining the engine speed. However thermal efficiency increased with lean burn conditions and NOX emission decreased with higher CO2 mixing rates.
Technical Paper

Effect of Hydrogen Concentration on Engine Performance, Exhaust Emissions and Operation Range of PREMIER Combustion in a Dual Fuel Gas Engine Using Methane-Hydrogen Mixtures

2015-09-01
2015-01-1792
A single cylinder, supercharged dual fuel gas engine with micro-pilot fuel injection is operated using methane only and methane-hydrogen mixtures. Methane only experiments were performed at various equivalence ratios and equivalence ratio of 0.56 is decided as the optimum operating condition based on engine performance, exhaust emissions and operation stability. Methane-hydrogen experiments were performed at equivalence ratio of 0.56 and 2.6 kJ/cycle energy supply rate. Results show that indicated mean effective pressure is maintained regardless of hydrogen content of the gaseous fuel while thermal efficiency is improved and presence of hydrogen reduces cyclic variations. Increasing the fraction of hydrogen in the fuel mixture replaces hydrocarbon fuels and reduces carbon monoxide and hydrocarbon emissions.
Technical Paper

Mixing Process of Direct Injection Hydrogen Jet in a Constant Volume Vessel by Using Spark-Induced Breakdown Spectroscopy

2013-10-14
2013-01-2526
Hydrogen spark-ignition (SI) engines based on direct-injection (DI) have been investigated because of their potential for high thermal efficiency and solving the problems related to knocking, backfiring, and pre-ignition. Wide range flammability limits in hydrogen engine enable smooth engine operation for a very lean mixture with low NOX. However, a too lean mixture may increase ignition delay and causes severe cyclic variations. There is a possibility that the turbulence occurred during injection of fuel surround the spark plug in the combustion chamber is major contributor to this phenomenon. To overcome this problem, a better understanding of the spark discharge and spark ignition during transient hydrogen jet is necessary. Therefore, it is very important to study an effect of local equivalence ratio and behavior of spark discharge in SI engine. This paper describes a mixing process of hydrogen jet using spark-induced breakdown spectroscopy (SIBS) in a constant volume vessel.
Journal Article

High-Pressure Hydrogen Jet and Combustion Characteristics in a Direct-Injection Hydrogen Engine

2011-08-30
2011-01-2003
Hydrogen spark-ignition (SI) engines based on direct-injection (DI) promise significant advantages in terms of thermal efficiency and power output, as well as a means of overcoming problems related to knocking, backfiring, and pre-ignition. In a DI hydrogen engine, the fuel/air mixture is formed by injecting a jet of hydrogen into the air inside the combustion chamber. An Ar-ion laser beam was used as a light source to visualize the hydrogen jet in a constant-volume chamber. This allowed us to study the structure of the jet in addition to other physical processes resulting from hydrogen gas injection. Combustion experiments were conducted in a single-cylinder SI optical research engine equipped with a DI system to detect the early kernel growth assisted by the spark, as well as flame propagation. Various equivalence ratios and fuel injection timings were analyzed to identify the effects on combustion.
Technical Paper

Effects of Injection Pressure, Timing and EGR on Combustion and Emissions Characteristics of Diesel PCCI Engine

2011-08-30
2011-01-1769
Effects of injection parameters on combustion and emission characteristics of diesel PCCI engine operating on optical and test engine was investigated. PCCI combustion was achieved through slightly narrow included angle injector, low compression ratio coupled with exhaust gas recirculation. Analysis based on diesel spray evolution, combustion process visualization and analysis was carried out. Spray penetration was evaluated and related to the exhaust emissions. Advancing the injection timing and EGR extended the ignition delay, decreased NOx emissions and increased HC, smoke and CO emissions. Higher injection pressure led to low emissions of NOx, smoke, HC and comparable CO. Optimum spray targeting position for minimum emission was identified. Impingement on the piston surface led to deterioration of emissions and increased fuel consumption while spray targeting the upper edge of Derby hat wall showed improvement in emission and engine performance.
Technical Paper

Visualization of Autoignited Kernel and Propagation of Pressure Wave during Knocking Combustion in a Hydrogen Spark-Ignition Engine

2009-06-15
2009-01-1773
Investigation of knocking combustion in a hydrogen spark-ignition engine is one of the major challenges for future vehicle development. The knock phenomenon in a Spark-Ignition (SI) engine is caused by autoignition of the unburned gas ahead of the flame. The explosive combustion of the end-gas creates a pressure wave that leads to damage of the cylinder wall and the piston head of the engine. We observed autoignition in the end-gas region due to compression by the propagating flame front using a high-speed colour video camera through the optically accessible cylindrical quartz window on the top of the cylinder head. Moreover, a high-speed monochrome video camera operating at a speed of 250, 000 frame/s was used to measure the pressure wave propagation. The goal of this research was to improve our ability to describe the effect of the autoignition process on the end-gas and propagating pressure wave during knocking combustion with the help of a high-speed video camera.
Technical Paper

Effect of EGR on Combustion and Exhaust Emissions in Supercharged Dual-Fuel Natural Gas Engine Ignited with Diesel Fuel

2009-06-15
2009-01-1832
The combustion and exhaust emissions characteristics of a supercharged dual-fuel natural gas engine with a single cylinder were analyzed. We focused on EGR (Exhaust Gas Recirculation) to achieve higher thermal efficiency and lower exhaust emissions. The combustion of diesel fuel (gas oil) as ignition sources was visualized using a high-speed video camera from the bottom of a quartz piston. The luminous intensity and flame decreased as the EGR rate increased. Furthermore, the ignition delay became longer due to the EGR. Characteristics of the combustion and exhaust emissions were investigated with changing EGR rates under supercharged conditions. The indicated mean effective pressure and thermal efficiency decreased with increasing EGR rate. In addition, NOx emissions decreased due to the EGR. In this study two-stage combustion was observed.
Technical Paper

Effect of Fuel Injection Parameters on Engine Performance and Emissions of a Supercharged Producer Gas-Diesel Dual Fuel Engine

2009-06-15
2009-01-1848
This study investigated the effect of some pilot fuel injection parameters, like injection timing, injection pressure and injection quantity on engine performance and exhaust emissions of a supercharged producer gas-diesel dual fuel engine. The engine has been tested to be used as a co-generation engine and its power output is an important matter. Experiments have been done to optimize the injection timing, injection pressure and injection quantity for the maximization of engine power. At constant injection pressures, there is an optimum amount of pilot injection quantity for that maximum engine power is developed without knocking and within the limit of maximum cylinder pressure. Above or below of that amount engine power is decreased. Higher injection pressures generally show better results than lower ones. However, good results can also be obtained with lower injection pressure, if maximum power timings can be selected.
Technical Paper

Mixture Formation Process in a Spark-Ignition Engine with Ethanol Blended Gasoline

2009-06-15
2009-01-1957
In this study, fuel concentration measurements in a spark-ignition (SI) engine with ethanol blended gasoline were carried out using an optical sensor installed in the spark plug with laser infrared absorption technique. The spark plug sensor for in-situ fuel concentration measurement was applied to a port injected SI engine. The molar absorption coefficients of ethanol blended gasoline were determined for various pressures and temperatures in advance using a constant volume vessel with electric heating system. Ethanol blended gasoline with high volumetric ratios shows lower molar absorption coefficients due to lower molar absorption coefficients of ethanol. The molar absorption coefficients of ethanol blended gasoline can be estimated by considering the molar fraction of each component.
Technical Paper

In-situ Residual Gas Concentration Measurement near a Spark Plug in a Motorcycle SI Engine

2007-10-30
2007-32-0049
This paper describes the development and application of a spark plug sensor using an infrared absorption technique to quantify the instantaneous residual gas concentration near the spark plug. The residual gas fraction inside engine cylinder is assumed to be proportional to CO2 concentration. The relationship between CO2 concentration and absorption strength of CO2 was determined for various pressures and temperatures in advance using a constant volume vessel with electric heating system. The spark plug sensor for in-situ CO2 concentration measurement was applied to a compression-expansion engine and also to a port injected motorcycle SI engine. It was possible to qualify the CO2 concentration inside residual gas during the compression stroke using the developed optical system with new spark plug sensor in compression-expansion machine.
Technical Paper

Ion Current in a Homogeneous Charge Compression Ignition Engine

2007-10-29
2007-01-4052
Homogeneous charge compression ignition (HCCI), has the potential to improve the fuel economy and to reduce NOx emission significantly. Spark plug in SI engine and fuel injector in diesel engine can be used directly to control the start of combustion and the combustion period. However, the combustion of HCCI engine is controlled by the chemical kinetic mainly due to the temperature histories in the cylinder. Therefore the combustion process of HCCI engine cannot be directly controlled. Ion sensors such as a spark plug or a gasket are useful to detect the combustion information in production engines. In this study, the ion current was measured in an HCCI engine with the heated charge mixture of fuel and air without EGR when the charge temperature, equivalence ratio and fuel were varied. Simultaneously in-cylinder pressure was measured and the rate of heat release was calculated. The relationship between the rate of heat release and the ion current is mainly discussed.
Technical Paper

Gas Temperature Measurement in a DME-HCCI Engine using Heterodyne Interferometry with Spark-Plug-in Fiber-Optic Sensor

2007-07-23
2007-01-1848
Non-intrusive measurement of transient unburned gas temperatures was developed with a fiber-optic heterodyne interferometry system. Using the value of the Gladstone-Dale constant for DME gas and combustion pressure we can calculate the in-cylinder temperature inside unburned and burned region. In this experimental study, it was performed to set up a fiber-optic heterodyne interferometry technique to measure the temperature before and behind the combustion region in a DME-HCCI engine. At first, measured temperature was almost the same as the temperature history assuming that the process that changes of the unburned and the burned are polytropic. In addition, we measured the temperature after combustion which of condition was burned gas with DME-HCCI combustion. The developed heterodyne interferometry used the spark-plug-in fiber-optic sensor has a good feasibility to measure the unburned and burned temperature history.
Technical Paper

Residual Gas Fraction Measurement inside Engine Cylinder Using Infrared Absorption Method with Spark-plug Sensor

2007-07-23
2007-01-1849
In this study, residual gas fraction measurements in a spark-ignition engine were carried out using an optical sensor installed in the spark plug with infrared absorption method. The residual gas fraction inside engine cylinder is proportional to the CO2 concentration. Infrared absorption method was applied and an infrared lamp and optical filter (center wavelength: around 4.3 μm) that coincides with the absorption lines of CO2 was used as a light source.The molar absorption coefficient of CO2 is discussed and compared to results in the HITRAN database. The effect of water vapor absorption doesn't affect the absorption of CO2. The absorption characteristics of CO2 were determined in advance using a constant volume vessel. Molar absorption coefficient depends on the CO2 concentration and ambient pressure and temperature, and wavelength of absorption line.
Technical Paper

Characteristics of Combustion Stability and Emission in SCCI and CAI Combustion Based on Direct-Injection Gasoline Engine

2007-07-23
2007-01-1872
Emissions remain a critical issue affecting engine design and operation, while energy conservation is becoming increasingly important. One approach to favorably address these issues is to achieve homogeneous charge combustion and stratified charge combustion at lower peak temperatures with a variable compression ratio, a variable intake temperature and a trapped rate of the EGR using NVO (negative valve overlap). This experiment was attempted to investigate the origins of these lower temperature auto-ignition phenomena with SCCI and CAI using gasoline fuel. In case of SCCI, the combustion and emission characteristics of gasoline-fueled stratified-charge compression ignition (SCCI) engine according to intake temperature and compression ratio was examined. We investigated the effects of relative air/fuel ratio, residual EGR rate and injection timing on the CAI combustion area.
Technical Paper

In-Situ Fuel Concentration Measurement near Spark Plug by 3.392 mm Infrared Absorption Method - Pressure and Temperature Dependence of the Gasoline Molar Absorption Coefficient

2006-04-03
2006-01-0182
This paper describes the development and application of a spark plug sensor using a 3.392 μm infrared absorption technique to quantify the instantaneous gasoline concentration near the spark plug. We developed an in situ laser infrared absorption method using a spark plug sensor and a 3.392 μm He-Ne laser as the light source; this wavelength coincides with the absorption line of hydrocarbons. First, we established a database of the molar absorption coefficients of premium gasoline at different pressures and temperatures, and determined that the coefficient decreased with increasing pressure above atmospheric pressure. We then demonstrated a procedure for measuring the gasoline concentration accurately using the infrared absorption technique. The history of the molar absorption coefficient of premium gasoline during the experiment was obtained from the established database using measured in-cylinder pressures and temperatures estimated by taking the residual gas into consideration.
Technical Paper

Ion Current During the Exhaust Process Under the Idling Condition in a Spark Ignition Engine

2005-10-24
2005-01-3872
Recently, in order to warm up the catalyst temperature rapidly, the retard ignition management has been developed. However, the excess retard of ignition causes the combustion instability and misfire. In this case, the ion sensor has been used for detecting the combustion quality for the late burned cycle under the idling condition. Several researchers have focused on the potential of ion-current measurement for the retard ignition management. However, the interpretation of ion-current during the exhaust process under the idling condition is not clear. In this study the source of ion-current for the late burned cycle during the exhaust process is focused. In order to measure the flame propagation process in the cylinder and the exhaust pipe, the single-cylinder test engine was used instead of production engine. Several ion probes were mounted on the cylinder head gasket, the piston head and the exhaust pipe for detecting the flame front.
Technical Paper

Measurement of Flame Propagation Characteristics in an SI Engine Using Micro-Local Chemiluminescence Technique

2005-04-11
2005-01-0645
A small Cassegrain optics sensor was developed to measure local chemiluminescence spectra and the local chemiluminescence intensities of OH*, CH*, and C2* in a four-stroke spark-ignition (SI) engine in order to investigate the propagation characteristics of the turbulent premixed flame. The small Cassegrain optics sensor was an M5 type that could be installed in place of a pressure transducer. The measurements could be used to estimate the flame propagation speed, burning zone thickness, and local air/fuel (A/F) ratio for each cycle. The specifications of the small Cassegrain optics sensor were the same as those used for previous engine measurements. In this paper, measurements were made of several A/F ratios using gasoline to fuel the model engine. The performances of two Cassegrain optics sensors were compared to demonstrate the advantages of the new small sensor by measuring the local chemiluminescence intensities of a turbulent premixed flame in the model engine.
X