Refine Your Search

Topic

Search Results

Standard

Immunity to Radiated Electromagnetic Fields - Bulk Current Injection (BCI) Method

2019-01-24
WIP
J1113/4
This SAE Standard defines a method for evaluating the immunity of automotive electrical/electronic devices to radiated electromagnetic fields coupled to the vehicle wiring harness. The method, called Bulk Current Injection (BCI), uses a current probe to inject RF onto the wiring harness in the frequency range of 1 to 400 MHz. BCI is one of a number of test methods that can be used to simulate the electromagnetic field.
Standard

Electromagnetic Compatibility Measurement Procedures and Limits for Components of Vehicles, Boats (up to 15 m), and Machines (Except Aircraft) (16.6 Hz to 18 GHz)

2018-10-25
CURRENT
J1113/1_201810
This SAE Standard covers the measurement of voltage transient immunity and within the applicable frequency ranges, audio (AF) and radio frequency (RF) immunity, and conducted and radiated emissions. By reference, ISO 11452-3, ISO 11452-7, ISO 11452-8, ISO 11452-10, ISO 11452-11, ISO 11452-2, and the emissions portion of ISO 7637-2 are adopted in place of SAE J1113-24, SAE J1113-3, SAE J1113-22, SAE J1113-2, SAE J1113-28, SAE J1113-21, and SAE J1113-42, respectively. In the event that an amendment is made, or a new edition is published, the new ISO document shall become part of this standard 6 months after the publication of the ISO document. SAE reserves the right to identify exceptions to the published ISO document with the exceptions to be documented in SAE J1113-24, SAE J1113-3, SAE J1113-22, SAE J1113-2, SAE J1113-28, SAE J1113-21, and SAE J1113-42, respectively. By reference, IEC CISPR 25 is adopted as the standard for the measurement of component emissions.
Standard

Function Performance Status Classification for EMC Immunity Testing

2018-09-13
CURRENT
J1812_201809
This SAE Standard provides a general method for defining the acceptable function performance status classification for the functions of automotive electronic devices upon application of the test conditions specified as described in appropriate EMC immunity test standards (for example, SAE J1113 and SAE J551). Testing of devices could be performed either on or off vehicles. Appropriate test signal and methods, Function Performance status, and test signal severity level would have to be specified in the individual cases.
Standard

Electromagnetic Immunity - Off-Vehicle Source (Reverberation Chamber Method) - Part 16 - Immunity to Radiated Electromagnetic Fields

2017-10-10
CURRENT
J551/16_201710
Vehicle electrical/electronic systems may be affected when immersed in an electromagnetic field generated by sources such as radio and TV broadcast stations, radar and communication sites, mobile transmitters, cellular phones, etc. This part of SAE J551 specifies off-vehicle radiated source test methods and procedures for testing passenger cars and commercial vehicles within a Reverberation Chamber. The method is used to evaluate the immunity of vehicle mounted electronic devices in the frequency range of 80 MHz to 2 GHz, with possible extensions 20 MHz to 10 GHz, depending upon chamber size and construction. Three methods for calibrating and applying electromagnetic fields are described in the document: 1) Mode Tuned Reverberation Chamber method, 2) Mode Stir (Standard) Reverberation Chamber method and 3) Mode Stir (Hybrid) Reverberation Chamber method.
Standard

Measurement of Radiated Emissions from Integrated Circuits—TEM/Wideband TEM (GTEM) Cell Method; TEM Cell (150 kHz to 1 GHz), Wideband TEM Cell (150 kHz to 8 GHz)

2017-09-22
CURRENT
J1752/3_201709
This measurement procedure defines a method for measuring the electromagnetic radiation from an integrated circuit (IC). The IC being evaluated is mounted on an IC test printed circuit board (PCB) that is clamped to a mating port (referred to as a wall port) cut in the top or bottom of a TEM or wideband TEM (GTEM) cell. The test board is not in the cell as in the conventional usage but becomes a part of the cell wall. This method is applicable to any TEM or GTEM cell modified to incorporate the wall port; however, the measured RF voltage is affected by the septum to test board (wall) spacing. This procedure was developed using a 1 GHz TEM cell with a septum to wall spacing of 45 mm and a GTEM cell with average septum to wall spacing of 45 mm over the port area. Other cells may not produce identical spectral output but may be used for comparative measurements, subject to their frequency and sensitivity limitations.
Standard

Measurement of Radiated Emissions from Integrated Circuits—Surface Scan Method (Loop Probe Method) 10 MHz to 3 GHz

2016-09-16
CURRENT
J1752/2_201609
This SAE Recommended Practice defines a method for evaluating the near field electric or magnetic component of the electromagnetic field at the surface of an integrated circuit (IC). This technique is capable of providing a detailed pattern of the RF sources internal to the IC. The resolution of the pattern is determined by the characteristics of the probes used and the precision of the mechanical probe positioner. The method is usable over the 10 MHz to 3 GHz frequency range with existing probe technology. The probe is mechanically scanned according to a programmed pattern in a plane parallel or perpendicular to the IC surface and the data is computer processed to provide a color-enhanced representation of field strength at the scan frequency. This procedure is applicable to measurements from an IC mounted on any circuit board that is accessible to the scan probe. For comparisons, the standardized test board shall be used.
Standard

Vehicle Electromagnetic Immunity - Electrostatic Discharge (ESD)

2015-09-17
CURRENT
J551/15_201509
This SAE Standard specifies the ESD test methods and procedures necessary to evaluate electronic modules intended for vehicle use. It describes test procedures for evaluating electronic modules in complete vehicles. A procedure for verifying the simulator that is used to generate the electrostatic discharges is given in Appendix A. Functional status classifications for immunity to ESD are given in Appendix B.
Standard

Electromagnetic Compatibility Measurement Procedure for Vehicle Components - Part 13: Immunity to Electrostatic Discharge

2015-02-26
CURRENT
J1113/13_201502
This SAE Standard specifies the test methods and procedures necessary to evaluate electrical components intended for automotive use to the threat of Electrostatic Discharges (ESDs). It describes test procedures for evaluating electrical components on the bench in the powered mode and for the packaging and handling non-powered mode. A procedure for calibrating the simulator that is used for electrostatic discharges is given in Appendix A. An example of how to calculate the RC Time Constant is given in Appendix B Functional Performance Status Classifications for immunity to ESD and Sensitivity classifications for ESD sensitive devices are given in Appendix C.
Standard

Performance Levels and Methods of Measurement of Electromagnetic Compatibility of Vehicles, Boats (up to 15 m), and Machines (16.6 Hz to 18 GHz)

2015-01-23
CURRENT
J551/1_201501
This SAE Standard covers the measurement of radio frequency radiated emissions and immunity. Each part details the requirements for a specific type of electromagnetic compatibility (EMC) test and the applicable frequency range of the test method. The methods are applicable to a vehicle, boat, machine or device powered by an internal combustion engine or battery powered electric motor. Operation of all engines or motors (main and auxiliary) of a vehicle, boat, machine or device is included. All equipment normally operating when the vehicle, boat, machine or device is in operation is included. Operator controlled equipment is included or excluded as specified in the individual document parts. As a special case, CISPR 12 applies to battery powered floor finishing equipment, but robot carpet sweepers are excluded. By reference, IEC CISPR 12 and CISPR 25 are adopted as the standards for the measurement of vehicle emissions.
Standard

Immunity to Radiated Electromagnetic Fields - Bulk Current Injection (BCI) Method

2014-04-25
CURRENT
J1113/4_201404
This SAE Standard defines a method for evaluating the immunity of automotive electrical/electronic devices to radiated electromagnetic fields coupled to the vehicle wiring harness. The method, called Bulk Current Injection (BCI), uses a current probe to inject RF onto the wiring harness in the frequency range of 1 to 400 MHz. BCI is one of a number of test methods that can be used to simulate the electromagnetic field.
Standard

Electromagnetic Compatibility Measurement Procedures and Limits for Components of Vehicles, Boats (up to 15 m), and Machines (Except Aircraft) (16.6 Hz to 18 GHz)

2013-10-01
HISTORICAL
J1113/1_201310
This SAE Standard covers the measurement of voltage transient immunity and within the applicable frequency ranges, audio (AF) and radio frequency (RF) immunity, and conducted and radiated emissions. By reference, ISO 11452-3, ISO 11452-7, ISO 11452-8, ISO 11452-10, ISO 11452-11, ISO 11452-2 and the emissions portion of ISO 7637-2 are adopted in place of SAE J1113-24, SAE J1113-3 , SAE J1113-22, SAE J1113-2, SAE J1113-28, SAE J1113-21 and SAE J1113-42, respectively. In the event that an amendment is made or a new edition is published, the new ISO document shall become part of this standard six months after the publication of the ISO document. SAE reserves the right to identify exceptions to the published ISO document with the exceptions to be documented in SAE J1113-24, SAE J1113-3, SAE J1113-22, SAE J1113-2, SAE J1113-28, SAE J1113-21 and SAE J1113-42 respectively. By reference, IEC CISPR 25 is adopted as the standard for the measurement of component emissions.
Standard

Function Performance Status Classification for EMC Immunity Testing

2013-06-12
HISTORICAL
J1812_201306
This SAE Standard provides a general method for defining the acceptable function performance status classification for the functions of automotive electronic devices upon application of the test conditions specified as described in appropriate EMC immunity test standards (for example, SAE J1113 and SAE J551). Testing of devices could be performed either on or off vehicles. Appropriate test signal and methods, Function Performance status, and test signal severity level would have to be specified in the individual cases.
Standard

Electronmagnetic Compatibility Measurement Procedure for Vehicle Components - Part 21: Immunity to Electromagnetic Fields, 30 MHz to 18 GHz, Absorber-Lined Chamber

2013-05-28
CURRENT
J1113/21_201305
This part of SAE J1113 specifies test methods and procedures for testing electromagnetic immunity (of vehicle radiation sources) of electronic components for passenger cars and commercial vehicles. To perform this test method, the electronic module along with the wiring harness (prototype or standard test harness) and peripheral devices will be subjected to the electromagnetic disturbance generated inside an absorber-lined chamber. The electromagnetic disturbances considered in this part of SAE J1113 are limited to continuous narrowband electromagnetic fields. Immunity measurements of complete vehicles are generally only performed at the vehicle manufacturer. The reasons, for example, are high costs of a large absorber-lined chamber, preserving the secrecy of prototypes, or the large number of different vehicle models. Therefore, for research, development and quality control, a laboratory measuring method shall be applied by the manufacturers.
Standard

Electromagnetic Immunity - Off-Vehicle Source (Reverberation Chamber Method) - Part 16 - Immunity to Radiated Electromagnetic Fields

2012-05-11
HISTORICAL
J551/16_201205
Vehicle electrical/electronic systems may be affected when immersed in an electromagnetic field generated by sources such as radio and TV broadcast stations, radar and communication sites, mobile transmitters, cellular phones, etc. This part of SAE J551 specifies off-vehicle radiated source test methods and procedures for testing passenger cars and commercial vehicles within a Reverberation Chamber. The method is used to evaluate the immunity of vehicle mounted electronic devices in the frequency range of 80 MHz to 2 GHz, with possible extensions 20 MHz to 10 GHz, depending upon chamber size and construction. Three methods for calibrating and applying electromagnetic fields are described in the document: 1) Mode Tuned Reverberation Chamber method, 2) Mode Stir (Standard) Reverberation Chamber method and 3) Mode Stir (Hybrid) Reverberation Chamber method.
Standard

Performance Levels and Methods of Measurement of Magnetic and Electric Field Strength from Electric Vehicles, 150 kHz to 30 MHz

2012-05-11
HISTORICAL
J551/5_201205
This SAE Recommended Practice specifies measurement procedures and performance levels for magnetic and electric field emissions and conducted power mains emissions over the frequency range 150 kHz to 30 MHz, for vehicles incorporating electric propulsion systems, e.g., battery, hybrid, or plug-in hybrid electric vehicles. Conducted emission measurements in this document are applicable only to battery-charging systems which utilize a switching frequency above 9 kHz, are mounted on the vehicle, and whose power is transferred by metallic conductors. Conducted emission requirements apply only during charging of the batteries from AC power lines. Conducted and radiated emissions measurements of battery-charging systems that use an induction power coupling device are not covered by this document. The measurement of electromagnetic disturbances for frequencies from 30 MHz to 1000 MHz is covered in CISPR 12.
Standard

Measurement of Radiated Emissions from Integrated Circuits—Surface Scan Method (Loop Probe Method) 10 MHz to 3 GHz

2011-06-24
HISTORICAL
J1752/2_201106
This SAE Recommended Practice defines a method for evaluating the near field electric or magnetic component of the electromagnetic field at the surface of an integrated circuit (IC). This technique is capable of providing a detailed pattern of the RF sources internal to the IC. The resolution of the pattern is determined by the characteristics of the probes used and the precision of the mechanical probe positioner. The method is usable over the 10 MHz to 3 GHz frequency range with existing probe technology. The probe is mechanically scanned according to a programmed pattern in a plane parallel or perpendicular to the IC surface and the data is computer processed to provide a color-enhanced representation of field strength at the scan frequency. This procedure is applicable to measurements from an IC mounted on any circuit board that is accessible to the scan probe. For comparisons, the standardized test board shall be used.
Standard

Measurement of Radiated Emissions from Integrated Circuits—TEM/Wideband TEM (GTEM) Cell Method; TEM Cell (150 kHz to 1 GHz), Wideband TEM Cell (150 kHz to 8 GHz)

2011-06-17
HISTORICAL
J1752/3_201106
This measurement procedure defines a method for measuring the electromagnetic radiation from an integrated circuit (IC). The IC being evaluated is mounted on an IC test printed circuit board (PCB) that is clamped to a mating port (referred to as a wall port) cut in the top or bottom of a TEM or wideband TEM (GTEM) cell. The test board is not in the cell as in the conventional usage but becomes a part of the cell wall. This method is applicable to any TEM or GTEM cell modified to incorporate the wall port; however, the measured RF voltage is affected by the septum to test board (wall) spacing. This procedure was developed using a 1 GHz TEM cell with a septum to wall spacing of 45 mm and a GTEM cell with average septum to wall spacing of 45 mm over the port area. Other cells may not produce identical spectral output but may be used for comparative measurements, subject to their frequency and sensitivity limitations.
Standard

Electromagnetic Compatibility Measurement Procedure for Vehicle Components - Part 13: Immunity to Electrostatic Discharge

2011-06-07
HISTORICAL
J1113/13_201106
This SAE Standard specifies the test methods and procedures necessary to evaluate electrical components intended for automotive use to the threat of Electrostatic Discharges (ESDs). It describes test procedures for evaluating electrical components on the bench in the powered mode and for the packaging and handling non-powered mode. A procedure for calibrating the simulator that is used for electrostatic discharges is given in Appendix A. An example of how to calculate the RC Time Constant is given in Appendix B Functional Performance Status Classifications for immunity to ESD and Sensitivity classifications for ESD sensitive devices are given in Appendix C.
Standard

Electromagnetic Compatibility Measurement Procedures and Limits for Vehicle Components (Except Aircraft)—Conducted Immunity, 15 Hz to 250 kHz—All Leads

2010-08-06
CURRENT
J1113/2_201008
This document is an SAE Standard and covers the requirements for determining the immunity characteristics of automotive electronic equipment, subsystems, and systems to EM energy injected individually onto each lead. This test may be used over the frequency range of 15 Hz to 250 kHz. The method is applicable to all input, output, and power leads. The method is particularly useful in evaluating DUTs with acoustic or visible display functions.
X