Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Diesel Fuel Improvers and Their Effect on Microbial Stability of Diesel/Biodiesel Blends

Additives that enhance properties, such as cetane number or cold flow, are introduced in diesel-biodiesel blends in order to upgrade its performance as well as to aid its handling and distribution. Furthermore, in order to protect the engine and fuel operating system equipment, diesel fuel may be treated with corrosion inhibitors and detergents. However, additives could also have an impact on other parameters beyond those that they are intended to boost. In the present study the effect of diesel fuel improvers on fuel’s microbial stability is examined. An additive-free ultra low sulfur diesel (ULSD) was blended with Soybean Fatty Acid Methyl Esters (FAME) and the resulting blend was treated separately with a series of commercially available diesel fuel additives.
Technical Paper

Experimental Investigation on the Stabilizing Effect of n-Butanol on Diesel-Bioethanol Blends

In accordance to the current environmental policy of the European Union by 2020, 10% of the transport fuel in every country comes from renewable sources such as biofuels. One of the most popular biofuels, (bio) ethanol is a probable suitable candidate for addition in diesel fuel because of its cleaner combustion and the ability to reduce emissions of gaseous pollutants. However, its use presents some important problems, attributed mainly to its incompatibility with diesel fuel during mixing due to the difference in the polarity. For this reason, substances that act as stabilizers of these mixtures are used, one of the most suitable being butanol. This substance is compatible with diesel fuel and ethanol, acting as a chemical bridge between the two, but also exhibits positive combustion behavior, as it is also an oxygenate that can be produced from renewable sources as well. The aim of this work was to investigate the behavior of diesel-ethanol mixtures using butanol as co-solvent.
Technical Paper

Evaluation of the Stability and Ignition Quality of Diesel-Biodiesel-Butanol Blends

FAME is the most common renewable component of conventional automotive diesel. Despite the advantages, biodiesel is more susceptible to oxidative deterioration and due to its chemical composition as well as its higher affinity to water, is considered to be a favorable substrate for microorganisms. On the other hand, apart from biodiesel, alcohols are considered to be promising substitutes to conventional diesel fuel because they can offer higher oxygen concentration leading to better combustion characteristics and lower exhaust emissions. More specifically, n-butanol is a renewable alcohol demonstrating better blending capabilities and properties when it is added to diesel fuel, as its composition is closer to conventional fuel, when compared ethanol to for example. Taking into consideration the alleged disinfectant properties of alcohols, it would be interesting to examine also the microbial stability of blends containing n-butanol in various concentrations.
Technical Paper

Effect of Phenolic Type Antioxidant Additives on Microbial Stability of Biodiesel Fuel

The aim of this study was to investigate the effect of a variety of phenolic type antioxidant additives on the microbial stability of biodiesel and diesel/biodiesel blends. Six synthetic phenolic type antioxidant agents were added in FAME at concentrations up to 1000 ppm. Treated FAME was also blended with Ultra Low Sulfur Diesel (ULSD) fuel at a concentration of 7% v/v in order to examine the activity of the substances in the final blends. The oxidation stability in the presence of the phenolic compounds was determined by carrying out measurements under accelerated oxidation process in the Rancimat unit. The effectiveness of those antioxidant agents against microbial contamination in biodiesel fuel was studied under certain testing protocols for detecting microbiological activity in the fuel supply chain and for evaluating antimicrobials against fuel bio-deterioration.
Technical Paper

A Study on Microbial Contamination of Alcohol-Blended Unleaded Gasoline

The fuel supply chain faces challenges associated with microbial contamination symptoms. Microbial growth is an issue usually known to be associated with middle distillate fuels and biodiesel, however, incidents where microbial populations have been isolated from unleaded gasoline storage tanks have also been recently reported. Alcohols are employed as gasoline components and the use of these oxygenates is rising, especially ethanol, which can be a renewable alternative to gasoline, as well. Despite their alleged disinfectant properties, a number of field observations suggests that biodeterioration could be a potential issue in fuel systems handling ethanol-blended gasoline. For this reason, in this study, the effect of alcohols on microbial proliferation in unleaded gasoline fuel was assessed. Ethanol (EtOH), iso-propyl alcohol (IPA) and tert-butyl-alcohol (TBA) were evaluated as examples of alcohols utilized in gasoline as oxygenates.
Technical Paper

Assessment of the Oxidation Stability of Biodiesel Fuel using the Rancimat and the RSSOT methods

For many years Rancimat was the only standardized method for measuring the oxidation stability of FAME and FAME/diesel blends. However this method is not applicable to pure conventional petroleum products and so the effect of FAME on diesel fuel stability could not be evaluated directly. Recently a Rapid Small Scale Oxidation Test (RSSOT) that covers the determination of the stability of biofuels and petroleum products was developed and standardized. In this study the oxidation stability of seven different types of FAMEs was assessed, either neat or blended with three types of ULSD fuel, by employing both the Rancimat and the RSSOT accelerated oxidation methods. The determinations from either test were analyzed and a comparative assessment of these two method was carried out.
Journal Article

Impact of Oxidation on Lubricating Properties of Biodiesel Blends

The lubricating efficiency is an important property of diesel fuel since several diesel engine parts, such as pumps and injectors, are lubricated by the fuel itself only. The evolution of oxidation products during oxidative deterioration may as well affect the lubricating properties of the biodiesel fuel blends and thus the proper functioning of a diesel engine. In this study Fatty Acid Methyl Esters were produced from various types of feedstock that significantly differentiate in their fatty acid profile. Each methyl ester was blended with an Ultra Low Sulphur Automotive Diesel (ULSD) at a concentration of 7% v/v which is currently the maximum acceptable FAME content according to the European Standard EN590. The B7 biodiesel blends were evaluated regarding fundamental physicochemical properties as well as their lubricating efficiency. Oxidation stability was examined on a Rancimat apparatus according to EN 15751 standard.
Technical Paper

Effectiveness of Various Phenolic Compounds (Commercial and Non-Commercial) on Biodiesel Oxidation Stability

This study investigates the effectiveness of seven phenolic compounds, including pyrogallol (PY), butylated hydroxytoluene (BHT), 2,5-di-tert-butylhydroquinone (DTBHQ), 4-tert-Butylcatechol (TBC), 2,5-bis(dimethylaminomethyl) hydroquinone, 2,5-bis(piperidinomethyl) hydroquinone and 2,5-bis(morpholinomethyl) hydroquinone on the oxidation stability of sunflower and soybean oil methyl esters. The seven phenolic compounds were dissolved in the base fuels at the same concentration levels, i.e., 200, 600, 800, 1000 and 1200 ppm. The oxidation stability measurements were carried out by employing a Rancimat accelerated oxidation unit according to EN 14214. Additionally, the antioxidant activity of the above mentioned compounds was also determined in a RSSOT apparatus (Rapid Small Scale Oxidation Test) according to ASTM D7545.
Journal Article

Microbiological Growth Study of Biodiesel Fuel

The diesel fuel supply chain faces new challenges associated with microbial contamination symptoms in biodiesel fuel. FAME's (Fatty Acid Methyl Esters) chemical composition along with its hygroscopic nature makes it more “biologically active” and as a result the final blends could be more prone to microbiological contamination. Survey of in-field incidents and facts in the Greek supply chain indicate that biodiesel is more prone to microbial growth. Furthermore, several experimental studies which demonstrate the susceptibility of biodiesel fuel for microbial growth have been conducted in the laboratory. The influence of FAME has been evaluated as well as the effect of microbial proliferation on the quality of the blend. Different types of biodiesel have been blended with Ultra Low Sulphur Diesel at various concentrations, and the resulting blends were mixed with bottom-water of known viable microbial colonies and stored.
Journal Article

Tribological Evaluation of Biobased Lubricant Basestocks from Cottonseed and Soybean Oils

The aim of this study was to synthesize environmentally adapted Trimethylolpropane (TMP) esters from cottonseed and soybean oils and to examine their quality parameters and tribological properties as potential lubricant basestocks. A two stage production process was followed. At first the above mentioned vegetable oils were transformed to the corresponding methyl esters via methanolysis in the presence of sodium methoxide. The desired TMP esters were finally synthesized by alkaline transesterification of the previously produced methylesters with TMP using sodium methoxide as catalyst. Following the purification phase the physicochemical characteristics of the synthesized TMP esters were examined. The tribological properties were evaluated by employing a Four-Ball apparatus. An additive-free mineral oil base oil was used as a reference lubricating fluid.
Technical Paper

Effect of Metals in the Oxidation Stability and Lubricity of Biodiesel Fuel

The introduction to the European market of higher levels of biodiesel blends focuses the research interest on the compatibility problems of the diesel fuel distribution system. The influence of metals in the oxidation stability and lubricity of two different types of commercially available FAMEs (without antioxidant additive) was investigated. Zinc (Zn), Copper (Cu) and Tin (Sn), were added in the form of solid metals (heterogeneous catalysis in liquid phase oxidation) and examined for their impact on the oxidation stability of biodiesel fuel. Oxidation stability was determined by Rancimat accelerated oxidation method, according to European Standard EN14214. Additionally, in order to examine the effect of the above mentioned metals in the presence of antioxidant additive, BHT was added in both biodiesel samples and oxidation stability determinations were carried out, as well.