Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

Numerical Investigation of Turbulence Anisotropy of In-Cylinder Flows with Multi-Cycle Large Eddy Simulation

2021-04-06
2021-01-0416
In-cylinder flows in internal combustion engines are highly turbulent in nature. An important property of turbulence that plays a key role in mixture formation is anisotropy; it also influences ignition, combustion and emission formation. Thus, understanding the turbulence anisotropy of in-cylinder flows is critical. Since the most widely used two-equation Reynolds-averaged Navier-Stokes (RANS) turbulence models assume isotropic turbulence, they are not suitable for correctly capturing the anisotropic behavior of turbulence. However, large eddy simulation (LES) can account for the anisotropic behavior of turbulence. In this paper, the Reynolds stress tensor (RST) is analyzed to assess the predictive capability of RANS and LES with regard to turbulence anisotropy. The influence of mesh size on turbulence anisotropy is also looked into for multi-cycle LES.
Technical Paper

Application of the HiL Method to Develop Transient Operating Strategies for Highly Flexible Power Generation in Gas Engine Power Plants

2021-04-06
2021-01-0421
The transient operation of gas engines is of paramount importance to sustainable power generation as it increases the share of renewable energy. Fast-reacting and highly flexible power plants are an integral component of scenarios for the smart power generation of the future. Modern gaseous fueled large bore engines already adapt to fluctuating load demands quickly and also provide high efficiency throughout all load conditions. However, future energy systems that integrate predominantly fluctuating renewables will require even further improved transient capabilities of these engines. The goal is to be competitive with diesel engines in applications with the highest transient requirements and to meet the high transient requirements while simultaneously generating significantly less emissions than other fossil generation facilities to support the future sustainable power supply.
Technical Paper

Visualization of Turbulence Anisotropy in the In-cylinder Flow of Internal Combustion Engines

2020-04-14
2020-01-1105
Turbulence anisotropy has a great influence on mixture formation and flame propagation in internal combustion engines. However, the visualization of turbulence in simulations is not straightforward; traditional methods lack the ability to display the anisotropic properties in the engine geometry. Instead, they use invariant maps, and important information about the locality of the turbulence anisotropy is lost. This paper overcomes this shortcoming by visualizing the anisotropy directly in the physical domain. Componentality contours are applied to directly visualize the anisotropic properties of turbulence in the three-dimensional engine geometry. Using an RGB (red, green, blue) color map, the three limiting states of turbulence (one-component, axisymmetric two-component and isotropic turbulence) are displayed in the three-dimensional physical domain.
Technical Paper

Analysis of a Prechamber Ignited HPDI Gas Combustion Concept

2020-04-14
2020-01-0824
High-pressure direct injection (HPDI) of natural gas into the combustion chamber enables a non-premixed combustion regime known from diesel engines. Since knocking combustion cannot occur with this combustion process, an increase in the compression ratio and thus efficiency is possible. Due to the high injection pressures required, this concept is ideally suited to applications where liquefied natural gas (LNG) is available. In marine applications, the bunkering of and operation with LNG is state-of-the-art. Existing HPDI gas combustion concepts typically use a small amount of diesel fuel for ignition, which is injected late in the compression stroke. The diesel fuel ignites due to the high temperature of the cylinder charge. The subsequently injected gas ignites at the diesel flame. The HPDI gas combustion concept presented in this paper is of a monovalent type, meaning that no fuel other than natural gas is used.
Technical Paper

Simulation Based Predesign and Experimental Validation of a Prechamber Ignited HPDI Gas Combustion Concept

2019-04-02
2019-01-0259
Using natural gas in large bore engines reduces carbon dioxide emissions by up to 25% at a lower fuel cost than diesel engines. In demanding applications with highly transient operating profiles, however, premix gas engines have disadvantages compared to diesel engines because of the potential for knocking and misfire to occur. Operating a gas engine using the diesel cycle requires high gas injection pressures. Furthermore, a source of ignition is needed due to the high autoignition temperature of methane. State-of-the-art solutions inject a small quantity of diesel fuel before introducing the natural gas. One monofuel alternative ignites the gas jets with flame torches that originate in a prechamber. This paper presents the simulation based development of a prechamber ignited high pressure direct injection (HPDI) gas combustion concept and subsequent experimental validation.
Technical Paper

Simulation-Based Control of Transient SCE Operation

2017-03-28
2017-01-0544
It is critical for gas and dual fuel engines to have improved transient characteristics in order that they can successfully compete with diesel engines. Testing of transient behavior as well as of different control strategies for the multi-cylinder engine (MCE) should already be done on the single cylinder engine (SCE) test bed during the development process. This paper presents tools and algorithms that simulate transient MCE behavior on a SCE test bed. A methodology that includes both simulation and measurements is developed for a large two-stage turbocharged gas engine. Simple and fast models and algorithms are created that are able to provide the boundary conditions (e.g., boost pressure and exhaust back pressure) of a multi-cylinder engine in transient operation in real-time for use on the SCE test bed. The main models of the methodology are discussed in detail.
Technical Paper

Engine Operating Parameter-based Heat Transfer Simulation to Predict Engine Warm-up

2014-04-01
2014-01-1103
Optimization of engine warm-up behavior has traditionally made use of experimental investigations. However, thermal engine models are a more cost-effective alternative and allow evaluation of the fuel saving potential of thermal management measures in different driving cycles. To simulate the thermal behavior of engines in general and engine warm-up in particular, knowledge of heat distribution throughout all engine components is essential. To this end, gas-side heat transfer inside the combustion chamber and in the exhaust port must be modeled as accurately as possible. Up to now, map-based models have been used to simulate heat transfer and fuel consumption; these two values are calculated as a function of engine speed and load. To extend the scope of these models, it is increasingly desirable to calculate gas-side heat transfer and fuel consumption as a function of engine operating parameters in order to evaluate different ECU databases.
Journal Article

Application of a Flow Field Based Heat Transfer Model to Hydrogen Internal Combustion Engines

2009-04-20
2009-01-1423
A realistic modeling of the wall heat transfer is essential for an accurate analysis and simulation of the working cycle of internal combustion engines. Empirical heat transfer formulations still dominate the application in engine process simulations because of their simplicity. However, experiments have shown that existing correlations do not provide satisfactory results for all the possible operation modes of hydrogen internal combustion engines. This paper describes the application of a flow field-based heat transfer model according to Schubert et al. [1]. The models strength is a more realistic description of the required characteristic velocity; considering the influence of the injection on the global turbulence and on the in-cylinder flow field results in a better prediction of the wall heat transfer during the compression stroke and for operations with multiple injections. Further an empirical hypothesis on the turbulence generation during combustion is presented.
Technical Paper

ROHR Simulation for DI Diesel Engines Based on Sequential Combustion Mechanisms

2006-04-03
2006-01-0654
In this paper a zero-dimensional simulation methodology for efficient pre-optimization of the combustion process in DI diesel engines is presented. A new model for the calculation of the rate of heat release is unveiled. It is based on the separate description of both the primary processes closely related to the fuel jet as well as the following combustion of the fuel mass remaining after the end of injection. The modeling of fuel mass distribution between premixed and diffusion combustion as well as a model for the fuel preparation time are explained. Furthermore, models for the calculation of ignition delay and premixed combustion based on an extended Arrhenius formulation are discussed, as well as turbulent combustion on the basis of a Magnussen model. The new features of the heat release model prove to be necessary to describe the effects of modern high-pressure fuel injection systems on the combustion process regarding the strong influence of the injection rate on the burn rate.
Technical Paper

Advanced Heat Transfer Model for CI Engines

2005-04-11
2005-01-0695
A realistic simulation of the wall heat transfer is an imperative condition for the accurate analysis and simulation of the working process of IC engines. Due to its simplicity in application, zero-dimensional wall heat transfer models dominate engine cycle simulation in practice. However, experience shows that existing zero-dimensional models for wall heat transfer do not yield satisfactory results in certain applications. This is mainly due to a lack of consideration of the actual flow field in the cylinder. In this paper a quasi-dimensional heat transfer model, which is based on a detailed description of the turbulent flow field in the combustion chamber, is described. The model presents a consistent approach for the high pressure as well as the low pressure part of the cycle. The results of the heat transfer model are compared with results from the correlation by Woschni/Huber and with experimental results from various DI Diesel engines.
Technical Paper

H2-Direct Injection – A Highly Promising Combustion Concept

2005-04-11
2005-01-0108
Hydrogen is frequently cited as a future energy carrier. Hydrogen allows a further optimization of internal combustion engines, especially with direct injection. In order to assess various concepts, detailed thermodynamic analyses were carried out. Effects, which can be neglected with conventional fuels (e.g. losses due to injection during compression stroke) are considered. These basics as well as several results from test bed investigations are described within this article. Wall heat losses were found to have a major influence on overall efficiency and are thus investigated in detail, based on local surface temperature measurement. Finally, concepts that allow an increase in engine efficiency and lowest NOx emissions are demonstrated.
Technical Paper

Investigations on Combustion and Heat Transfer in a Large Gaseous Fuelled Engine

2003-03-03
2003-01-0562
The 3D CFD method has become an essential and reliable tool for the development of modern large gaseous-fuelled engines. This holds especially true for the optimization of mixture formation and charge motion in prechamber engines to ensure suitable conditions near the spark plug at ignition time. In order to initialize a quick combustion process, an ignitable mixture with high turbulence but moderate velocity must prevail round the spark plug. However, suitable models for combustion and heat transfer are inevitable for a realistic simulation of the whole engine cycle. Within 3D CFD codes the combustion process is usually calculated using the PDF (probability density function) - model; heat transfer is modeled based on the logarithmic wall function. Experimental investigations were carried out on a single cylinder research engine in order to validate the combustion model used and different heat transfer models.
Technical Paper

Heat Transfer to the Combustion Chamber and Port Walls of IC Engines - Measurement and Prediction

2000-03-06
2000-01-0568
This paper summarizes the results of several investigations on in-cylinder heat transfer during high-pressure and gas exchange phases as well as heat transfer in the inlet and outlet ports for a number of different engine types (DI Diesel, SI and gaseous fueled engine). The paper contains a comparision of simulation results and experimental data derived from heat flux measurements. Numerical results were obtained from zero-, one- and three-dimensional simulation methods. Time and spatially resolved heat fluxes were measured applying the surface temperature method and special heat flux sensors. The paper also includes an assessment of different sensor types with respect to accuracy and applicability.
X