Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Energy Efficiency Analysis between In-cylinder and External Supplemental Fuel Strategies

2007-04-16
2007-01-1125
Preliminary empirical and modeling analyses are conducted to evaluate the energy efficiency of in-cylinder and external fuel injection strategies and their impact on the energy required to enable diesel particulate filter (DPF) regeneration for instance. During the tests, a thermal wave that is generated from the engine propagates along the exhaust pipe to the DPF substrate. The thermal response of the exhaust system is recorded with the thermocouple arrays embedded in the exhaust system. To implement the external fuel injection, an array of thermocouples and pressure sensors in the DPF provide the necessary feedback to the control system. The external fuel injection is dynamically adjusted based on the thermal response of the DPF substrate to improve the thermal management and to reduce the supplemental energy. This research intends to quantify the effectiveness of the supplemental energy utilization on aftertreatment enabling.
Technical Paper

Energy Efficiency Analysis of Active-flow Operations in Diesel Engine Aftertreatment

2006-10-16
2006-01-3286
Experiments are carried out with the diesel particulate filter and oxidation catalyst embedded in the active-flow configurations on a single cylinder diesel engine. The combined use of various active flow control schemes are identified to be capable of shifting the exhaust gas temperature, flow rate, and oxygen concentration to favorable windows for filtration, conversion, and regeneration processes. Empirical and theoretical investigations are performed with a transient one-dimensional single channel aftertreatment model developed in FORTRAN and MATLAB. The influence of the supplemental energy distribution along the length of aftertreatment device is evaluated. The theoretical analysis indicates that the active-flow control schemes have fundamental advantages in optimizing the converter thermal management including reduction in supplemental heating, increase in thermal recuperation, and improving overheating protection.
Technical Paper

Empirical and Theoretical Investigations of Active-flow Control on Diesel Engine After-treatment

2006-04-03
2006-01-0465
Empirical and theoretical studies are made between active-flow control and passive-flow control schemes in investigating the influences of gas flow, heat transfer, chemical reaction, oxygen concentration, and substrate properties. The exhaust active-flow control includes the parallel alternating flow, partial restricting flow, periodic flow reversal, and extended flow stagnation that are found to be especially effective to treat engine exhausts that are difficult to cope with conventional passive-flow converters [1, 2]. The tests are set up on a single cylinder Yanmar engine. Theoretical studies are performed with the one-dimensional transient modeling techniques to analyze the thermal behavior of the diesel after-treatment systems when active flow control schemes are applied.
Technical Paper

Boundary Layer Enhanced Thermal Recuperation for Diesel Particulate Filter Regeneration under a Periodic Flow Reversal Operation

2005-04-11
2005-01-0951
Diesel Particulate Filters (DPF) are viable to reduce smoke from diesel engines. An oxidation process is usually required to remove the Particulate Matter (PM) loading from the DPF substrates. In cases when the engine exhaust temperature is insufficient to initiate a thermal regeneration, supplemental energy is commonly applied to raise the exhaust gas and/or the DPF substrate temperatures. A flow reversal (FR) mechanism that traps a high temperature region in the DPF substrate by periodically altering the gas flow directions has been identified to be capable of reducing the supplemental energy and thus to improve the overall thermal efficiency of the engine. However, extended operations with low exhaust temperature lowers the DPF boundary temperatures that defers the regeneration processes. Furthermore, the temperature fluctuations caused by the periodic FR operation also increase the thermal stress in the DPF.
Technical Paper

A Thermal Analysis of Active-flow Control on Diesel Engine Aftertreatment

2004-10-25
2004-01-3020
One-dimensional transient modeling techniques are adapted to analyze the thermal behavior of lean-burn after-treatment systems when active flow control schemes are applied. The active control schemes include parallel alternating flow, partial restricting flow, and periodic flow reversal (FR) that are found to be especially effective to treat engine exhausts that are difficult to cope with conventional passive flow converters. To diesel particulate filters (DPF), lean NOx traps (LNT), and oxidation converters (OC), the combined use of active flow control schemes are identified to be capable of shifting the exhaust gas temperature, flow rate, and oxygen concentration to more favorable windows for the filtration, conversion, and regeneration processes. Comparison analyses are made between active flow control and passive flow control schemes in investigating the influences of gas flow, heat transfer, chemical reaction, oxygen concentration, and converter properties.
Technical Paper

The Potential for Reducing CO and NOx Emissions from an HCCI Engine Using H2O2 Addition

2003-10-27
2003-01-3204
The effects of hydrogen peroxide addition on iso-octane/air Homogeneous Charge Compression Ignition (HCCI) combustion have been investigated analytically. Particular attention was focused on the predications involving homogeneous gas-phase kinetics. Use was made of Peters' iso-octane mechanism in CHEMKIN and convective heat transfer was included in the analyses. This enabled the influences that H2O2 addition has on species concentration and ignition promotion and hence exhaust emissions to be determined. It was found that both CO and NOx emission levels could be ameliorated. The former effect is considered to be a result of the decomposition of H2O2 into OH intermediate species and hence reducing the time to ignition and the onset of combustion.
X