Refine Your Search

Search Results

Journal Article

A Study on High-Accuracy Test Method for Fuel Consumption of Heavy-Duty Diesel Vehicles Considering the Transient Characteristics of Engines

2016-04-05
2016-01-0908
In the conventional approval test method of fuel consumption for heavy-duty diesel vehicles currently in use in Japan, the fuel consumption under the transient test cycle is calculated by integrating the instantaneous fuel consumption rate referred from a look-up table of fuel consumptions measured under the steady state conditions of the engine. Therefore, the transient engine performance is not considered in this conventional method. In this study, a highly accurate test method for fuel consumption in which the map-based fuel consumption rate is corrected using the transient characteristics of individual engines was developed. The method and its applicability for a heavy-duty diesel engine that complied with the Japanese 2009 emission regulation were validated.
Technical Paper

A Study on the Improvement of NOx Emission Performance in a Diesel Engine Fuelled with Biodiesel

2013-10-14
2013-01-2677
The use of biofuel is essential for the reduction of greenhouse gas emission. This study highlights the use of biodiesel as a means of reducing greenhouse gas emission from the diesel engine of heavy-duty vehicles. Biodiesel is fatty acid methyl ester (FAME) obtained through ester exchange reaction by adding methanol to oil, such as rapeseed oil, soybean oil, palm oil, etc. The CO2 emission from combustion of biodiesel is defined to be equivalent to the CO2 volume absorbed by its raw materials or plants in their course of growth. On the other hand, however, operation of diesel engine with biodiesel is known to increase the NOx emission when compared with that with conventional diesel fuel. Then suppressing this NOx increase is regarded as a critical issue. This paper consists of two parts: comprehending the factors of NOx emission increase and improving this emission performance in a diesel engine fuelled with biodiesel.
Technical Paper

A Study on N2O Formation Mechanism and Its Reduction in a Urea SCR System Employed in a DI Diesel Engine

2012-09-10
2012-01-1745
N₂O is known to have a significantly high global warming potential. We measured N₂O emissions in engine-bench tests by changing the NO/NH₃ ratio and exhaust gas temperature at the oxidation catalyst inlet in a heavy-duty diesel engine equipped with a urea SCR (selective catalytic reduction) system. The results showed that the peak N₂O production ratio occurred at an exhaust gas temperature of around 200°C and the maximum value was 84%. Moreover, the N₂O production ratio increased with increasing NO/NH₃. Thus, we concluded that N₂O is produced via the NO branching reaction. Based on our results, two methods were proposed to decrease N₂O formation. At low temperatures ~200°C, NO should be reduced by controlling diesel combustion to lower the contribution of NO to N₂O production. This is essential because the SCR system cannot reduce NOx at low temperatures.
Technical Paper

Effect of Fuel Properties of Biodiesel on Its Combustion and Emission Characteristics

2011-08-30
2011-01-1939
The use of biofuel is essential for the reduction of greenhouse gas emission. This paper highlights the use of biodiesel as a means of reducing greenhouse gas emission from the diesel engine of heavy-duty vehicles. Biodiesel is fatty acid methyl ester (FAME) obtained through ester exchange reaction by adding methanol to oil, such as rapeseed oil, soybean oil, palm oil, etc. The CO₂ emission from combustion of biodiesel is defined to be equivalent to the CO₂ volume absorbed by its raw materials or plants in their course of growth. On the other hand, however, biodiesel is known to increase the NOx emission when compared with operating with conventional diesel fuel, then suppressing this increase is regarded as a critical issue. This study is intended to identify the fuel properties of biodiesel free from increase in the NOx emission.
Technical Paper

Improvement of NOx Reduction Rate of Urea-SCR System by NH3 Adsorption Quantity Control

2008-10-06
2008-01-2498
A urea SCR system was combined with a DPF system to reduce NOx and PM in a four liters turbocharged with intercooler diesel engine. Significant reduction in NOx was observed at low exhaust gas temperatures by increasing NH3 adsorption quantity in the SCR catalyst. Control logic of the NH3 adsorption quantity for transient operation was developed based on the NH3 adsorption characteristics on the SCR catalyst. It has been shown that NOx can be reduced by 75% at the average SCR inlet gas temperature of 158 deg.C by adopting the NH3 adsorption quantity control in the JE05 Mode.
Technical Paper

Effect of Biodiesel Blending on Emission Characteristics of Modern Diesel Engine

2008-10-06
2008-01-2384
The use of biodiesel fuels as an alternative fuel for petroleum diesel fuel is very effective for the reduction of CO2 emission, because biodiesel is produced from renewable biomass resources. Biodiesel is usually blended to conventional diesel fuel in various proportions. It is possible that this biodiesel blending causes the problems on emission characteristics of modern diesel engine, because it could be confirmed that the application of neat biodiesel to modern diesel engines whose control parameters were optimized for conventional diesel fuel deteriorated the emission performances. It is necessary to clarify the effect of biodiesel blending on exhaust emissions of modern diesel engine. Rapeseed oil methyl ester (RME) was selected as a biodiesel used in this study.
Journal Article

Miller-PCCI Combustion in an HSDI Diesel Engine with VVT

2008-04-14
2008-01-0644
A variable valve timing (VVT) mechanism has been applied in a high-speed direct injection (HSDI) diesel engine. The effective compression ratio (εeff) was lowered by means of late intake valve closing (LIVC), while keeping the expansion ratio constant. Premixed charge compression ignition (PCCI) combustion, adopting the Miller-cycle, was experimentally realized and numerically analyzed. Significant improvements of NOx and soot emissions were achieved for a wide range of engine speeds and loads, frequently used in a transient mode test. The operating range of the Miller-PCCI combustion has been expanded up to an IMEP of 1.30 MPa.
Technical Paper

Diesel Emissions Improvement by RME in a High Boost and EGR Single Cylinder Engine

2008-04-14
2008-01-1376
The biomass fuel is expected to solve the global warming due to a carbon neutral. A rapeseed oil methyl ester (RME) as biomass fuel was selected, and also a low sulfur diesel fuel is tested as reference fuel in this study. The experiments were carried out to improve diesel emissions and engine performance using high boost and high rate EGR system and a common rail injection system in a single cylinder engine. The diesel emissions and engine performance have been measured under the experimental conditions such as charging boost pressure from atmospheric pressure to 401.3kPa maximum and changing EGR rate from 0% to 40% maximum. RME contain about 10 mass % oxygen in the fuel molecule. Furthermore, RME does not contain aromatic hydrocarbons in the fuel. Due to these chemical properties, RME can be used at 40% high EGR condition.
Technical Paper

Effect of Exhaust Gas Recirculation on Exhaust Emissions from Diesel Engines Fuelled with Biodiesel

2007-09-16
2007-24-0128
Application of biodiesel fuel (BDF) to diesel engine is very effective to reduce CO2 emission, because bio-diesel is carbon neutral in principle. However, when biodiesel was applied to conventional diesel engines without modification for biodiesel, NOx emission was increased by the change in fuel characteristics. It is necessary to introduce some strategies into diesel engines fuelled with biodiesel for lower NOx emission than conventional diesel fuel case. The purpose of this study is to reveal that exhaust gas recirculation (EGR) is one of the solutions for the reduction of NOx emission and meeting the future emission regulations when using biodiesel. Neat Rapeseed oil methyl ester (RME) as a biodiesel (B100) was applied to diesel engines equipped with high pressure loop (HPL) EGR system and low pressure loop (LPL) EGR system. Cooled HPL EGR was increased during steady-state operations and JE05 transient mode tests.
Technical Paper

Optimization of Engine System for Application of Biodiesel Fuel

2007-07-23
2007-01-2028
Application of biodiesel fuel (BDF) to diesel engine is very effective to reduce CO2 emission, because biodiesel is carbon neutral in principle. However, biodiesels yield an increase in NOx emission from conventional diesel engine, compared with diesel fuel case. Therefore, some strategies are needed for meeting the future emission regulations when using biodiesel. In this study, rapeseed oil methyl ester (RME) was applied to diesel engine equipped with exhaust gas recirculation (EGR) system and NOx storage reduction (NSR) catalyst. NOx reduction rate of NSR catalyst was drastically decreased by using RME, even if injection quantity of RME for rich spike was enhanced. However, an increase in EGR rate could reduce NOx emission without the deterioration in smoke and PM emissions.
Technical Paper

Advanced Diesel Combustion Using of Wide Range, High Boosted and Cooled EGR System by Single Cylinder Engine

2006-04-03
2006-01-0077
For reducing exhaust emissions of heavy-duty diesel engines, the authors made an experimental study of diesel combustion using a single cylinder engine. The engine performance and exhaust emissions have been measured using a wide range and high EGR rate under the conditions of high boost intake pressure. The engine test cell has been equipped the external supercharger that is able to raise the boost pressure to 500 kPa, and also equipped the EGR system to increase the EGR rate until 50% under the 500 kPa boost condition. In various test conditions of load and engine speeds the authors have obtained the results, that is, NOx has been reduced drastically without increasing Particulate Matter (PM).
Technical Paper

Application of Biodiesel Fuel to Modern Diesel Engine

2006-04-03
2006-01-0233
The 1997 Kyoto protocol came into effect in February, 2005 to reduce greenhouse gases within the period 2008-2012 by at least 5 % with respect to 1990 levels. Application of biodiesel fuel (BDF) to diesel engine is very effective to reduce CO2 emission, because BDF is carbon neutral in principle. The purpose of this project is to produce a light-duty biodiesel truck which can be suitable for emission regulation in next generation. The effect of BDF on the performance and emissions of modern diesel engine which was equipped with the aftertreatment for PM and NOx emissions was investigated without modifications of engine components and parameters, as a first step for research and development of biodiesel engine. Rapeseed oil methyl ester (RME) was selected in behalf of BDF, and combustion characteristics, engine performance and exhaust emissions were made a comparison between RME and petroleum diesel fuel by steady operation and Japan transient mode (JE05) tests.
Technical Paper

Achievement of Medium Engine Speed and Load Premixed Diesel Combustion with Variable Valve Timing

2006-04-03
2006-01-0203
A variable valve timing (VVT) mechanism was applied to achieve premixed diesel combustion at higher load for low emissions and high thermal efficiency in a light duty diesel engine. By means of late intake valve closing (LIVC), compressed gas temperatures near the top dead center are lowered, thereby preventing too early ignition and increasing ignition delay to enhance fuel-air mixing. The variability of effective compression ratio has significant potential for ignition timing control of conventional diesel fuel mixtures. At the same time, the expansion ratio is kept constant to ensure thermal efficiency. Combining the control of LIVC, EGR, supercharging systems and high-pressure fuel injection equipment can simultaneously reduce NOx and smoke. The NOx and smoke suppression mechanism in the premixed diesel combustion was analyzed using the 3D-CFD code combined with detailed chemistry.
Technical Paper

Emission Characteristics of a Urea SCR System under Catalysts Activated and De-Activated Conditions

2006-04-03
2006-01-0639
Urea SCR (Selective Catalytic Reduction) system has high potential of reducing NOx. But such as system durability and safety under deteriorated catalysts conditions have not been well enough clarified because it is new technology for vehicles. In this paper, current NOx emission level of an engine equipped with urea SCR system is discussed and then exhaust emission characteristics were analyzed when the SCR catalyst and/or oxidation catalyst lose their functions. When both SCR and oxidation catalyst were de-activated, not only NOx but also PM increased remarkably, which were much more than the engine-out emissions. Oxidation catalyst downstream of SCR catalyst was effective to suppress such deteriorations.
Technical Paper

Ignition and Combustion Control of Diesel HCCI

2005-05-11
2005-01-2132
Homogeneous Charge Compression Ignition (HCCI) is effective for the simultaneous reduction of soot and NOx emissions in diesel engine. In general, high octane number fuels (gasoline components or gaseous fuels) are used for HCCI operation, because these fuels briefly form lean homogeneous mixture because of long ignition delay and high volatility. However, it is necessary to improve injection systems, when these high octane number fuels are used in diesel engine. In addition, the difficulty of controlling auto-ignition timing must be resolved. On the other hand, HCCI using diesel fuel (diesel HCCI) also needs ignition control, because diesel fuel which has a low octane number causes the early ignition before TDC. The purpose of this study is the ignition and combustion control of diesel HCCI. The effects of parameters (injection timing, injection pressure, internal/external EGR, boost pressure, and variable valve timing (VVT)) on the ignition timing of diesel HCCI were investigated.
Technical Paper

Effects of Fuel Properties on Combustion and Exhaust Emissions of Homogeneous Charge Compression Ignition (HCCI) Engine

2004-06-08
2004-01-1966
Homogeneous Charge Compression Ignition (HCCI) is effective for the simultaneous reduction of soot and NOx emissions from diesel engine. In general, high octane number and volatility fuels (gasoline components or gaseous fuels) are used for HCCI operation, because very lean mixture must be formed during ignition delay of the fuel. However, it is necessary to improve fuel injection systems, when these fuels are used in diesel engine. The purpose of the present study is the achievement of HCCI combustion in DI diesel engine without the large-scale improvements of engine components. Various high octane number fuels are mixed with diesel fuel as a base fuel, and the mixed fuels are directly applied to DI diesel engine. At first, the cylinder pressure and heat release rate of each mixed fuel are analyzed. The ignition delay of HCCI operation decreases with an increase in the operation load, although that of conventional diesel operation does not almost varied.
Technical Paper

Application of Surovikin's Carbon Black Model for Simulating Soot Emission from Diesel Engine Using a Three Dimensional KIVA Code

2003-05-19
2003-01-1851
A soot model based on the kinetics of the formation of particles of carbon black, starting from radical nuclei to particle nuclei, is formulated and implemented to a 3 dimensional KIVA code. Model is capable of predicting total in-cylinder soot concentration and particle size distribution. Empirical parameters were tuned for the total soot emission of a single cylinder DI diesel engine. Model predicted results are quite consistent with reported experimental observations.
Technical Paper

Exhaust Emission Behavior of Mixed Fuels having Different Component Cetane Number and Boiling Point

2003-05-19
2003-01-1868
To clarify the effect of fuel properties on diesel exhaust emissions, direct injection of two component fuels with approximately zero aromatic content and sulfur were attempted in a diesel engine. Fuels were prepared using paraffins having different cetane numbers and boiling points. Parameters considered are the Average Boiling Point (ABP) by volume and the difference of component characteristics for the same ABP. The results indicate that the trade off relation between NOx and particulate matter (PM) emissions depends significantly on ABP or density and is independent of the fuel component. On the other hand, components of the mixed fuels have significant influence on SOF and THC emissions. Fuels having higher amount of low boiling point components emit higher THC. Mixtures of low boiling point-high cetane number fuel and high boiling point-low cetane number fuel or fuel that contains normal paraffins only emit higher SOF.
Technical Paper

N2O Emissions from Vehicles Equipped with Three-Way Catalysts in a Cold Climate

2002-05-06
2002-01-1717
Nitrous oxide (N2O) is a strong green house effect gas and three-way catalyst is one of the major sources. N2O is mostly emitted at temperatures during the process of light off in the catalyst and the frequency of this temperature range over total temperature range distribution affects strongly on N2O emission. The effect of cold ambient on N2O emission was analyzed based on N2O-catalyst temperature characteristics and catalyst temperature data gained by road driving test at north part of Japan in winter. As results, N2O emission may drastically increase in colder cities and winter city traffic conditions.
Technical Paper

Study of the Effect of Boiling Point on Combustion and PM Emissions in a Compression Ignition Engine Using Two-Component n-Paraffin Fuels

2002-03-04
2002-01-0871
Fuel composition is investigated as a parameter influencing fuel/air mixing of direct injected fuel and the subsequent consequences for particulate emissions. Presumably, enhanced mixing prior to ignition results in a larger portion of fuel burning as a premixture and a smaller portion of diffusion burning around fuel-rich regions. This would potentially lower particulate emissions without overly compromising hydrocarbon emissions or high load operation. Using mixtures of n-paraffin fuels, particulate emissions were measured and the results were compared with in-cylinder visualization of the injection process and two-color method calculations of flame temperature. In general, lower boiling point fuels exhibited higher flame temperatures, less visible flame, and lower particulate emissions.
X