Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Effects of Cavitation and Hydraulic Flip in 3-Hole GDI Injectors

2017-03-28
2017-01-0848
The performance of Gasoline Direct Injection (GDI) engines is governed by multiple physical processes such as the internal nozzle flow and the mixing of the liquid stream with the gaseous ambient environment. A detailed knowledge of these processes even for complex injectors is very important for improving the design and performance of combustion engines all the way to pollutant formation and emissions. However, many processes are still not completely understood, which is partly caused by their restricted experimental accessibility. Thus, high-fidelity simulations can be helpful to obtain further understanding of GDI injectors. In this work, advanced simulation and experimental methods are combined in order to study the spray characteristics of two different 3-hole GDI injectors.
Technical Paper

A New Euler/Lagrange Approach for Multiphase Simulations of a Multi-Hole GDI Injector

2015-04-14
2015-01-0949
Compared to conventional injection techniques, Gasoline Direct Injection (GDI) has a lot of advantages such as increased fuel efficiency, high power output and low emission levels, which can be more accurately controlled. Therefore, this technique is an important topic of today's injection system research. Although the operating conditions of GDI injectors are simpler from a numerical point of view because of smaller Reynolds and Weber numbers compared to Diesel injection systems, accurate simulations of the breakup in the vicinity of the nozzle are very challenging. Combined with the complications of experimental techniques that could be applied inside the nozzle and at the nozzle exit, this is the reason for the lack of understanding the primary breakup behavior of current GDI injectors.
Technical Paper

Influence of the Injector Geometry on Primary Breakup in Diesel Injector Systems

2014-04-01
2014-01-1427
Diesel injection systems have a significant impact on the performance as well as emission and pollutant formation of modern diesel engines. Even though the geometry of atomizers became more and more complex over the last years, injection systems still have a large potential for improving the overall diesel engine combustion process. Due to the complexity of the atomization process, reliable models are not available, yet these are highly desired for supporting the design process. They have to be developed using detailed numerical simulations. In this work, the “Spray A” reference case defined by the Engine Combustion Network is simulated under realistic operation conditions using a recently developed numerical framework for multiphase flows. A Large-Eddy Simulation of the nozzle internal flow is coupled with a Direct Numerical Simulation of the interfacial outside flow and the resulting primary breakup is analyzed.
X