Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Effect of Mesh Size in Numerical Simulation of Turbine Housing in Turbocharger

Numerical method is popular in analyzing turbine housing in turbocharger with an early and rapid risk assessment. However, complex casting and extreme thermal loading from exhaust gas temperature and flow variation under engine duty cycle lead to big thermal stress and this makes material serviced in the plastic zone. Previous numerical simulations show that a mesh size is insensitive to the elastic finite element analysis (FEA), but might not be proper for elastic-plastic FEA, even that other boundary conditions keep same, which indicating simulation results are changeable with mesh size and a simple numerical mesh size convergence might not be enough to guarantee accurate numerical results as well. Therefore, several different mesh sizes are used in elastic-plastic analysis of turbine housing to investigate the influence on numerical results.
Technical Paper

Numerical and Experimental Investigation of Effect of Tongue Shape on Turbine Reliability

Turbine housing in turbocharger is a critical part which must withstand severe cyclic mechanical and thermal load throughout its service life. The combination of thermal transients with mechanical load cycles results in a complex evolution of damage, leading to thermal mechanical fatigue (TMF) of the material and, after a certain number of loading cycles, to failure of the component. The volute tongue at radial turbine housing is a key feature which is frequently the first location subject to thermal crack failure due to turbine design. Design of tongue is of importance to improve system's TMF performance. In this work, two tongues including square and elliptic shape on radial turbine fatigue are studied. TMF performance is evaluated by finite element analysis (FEA). In particular, experimental method is carried out in order to validate the simulation model. The good agreement is found between numerical and experimental results.
Technical Paper

Port Design Study in Waste Gate Turbocharger with Numerical Simulation

A smart waste gate (WG) turbocharger controls boost by bypassing turbine flow through the WG port which allows optimizing both low and high speed engine performance. However, the WG port in the turbine housing involves much complex geometry which leads to potentially higher thermal stress and plastic strain if design is improper. This paper first presents the common thermal cracking problems at port zone and then shows finite element analysis (FEA) results for one design. The predicted location correlates well with the observed failure port location. A design study with key parameters for the port is conducted under same boundary conditions. Key parameters include height H, inner diameter D and inner diameter fillet r of the port. Totally 13 designs are analyzed under packaging and performance limitation. Accumulated plastic strain (APS) from FEA is used to evaluate different designs. Curves are plotted to show the relationship between APS and design parameters.
Technical Paper

Turbine Housing Boss Design in Turbocharger Application

Turbochargers are widely used to boost internal combustion engines for both on and off high way applications to meet emission and performance requirements. Due to the high operating temperature, turbochargers are subjected to hostile environment. Low vibration level is one of the key requirements while designing turbo for every application. An engine bracket is employed to support turbine housing to reduce total vibration level. Turbine housing in the turbocharger is commonly equipped with boss to accommodate the engine bracket supporting which eventually includes additional constraints in the turbocharger system. Additional constraints in the turbine housing can lead to adverse impact in the Thermo-Mechanical Fatigue (TMF) life of the housing component. Boss generally has critical influence to thermal stress distribution of the turbine housing.
Technical Paper

A Novel Design and Validation for Turbine Housing Inlet Flange

Turbocharger is widely used to boost engine due to emissions, fuel and cost reasons. As one of the hot components, it is subjected to severe temperature and thermal load history. Under these conditions, the material suffers hostile thermal mechanical fatigue (TMF) damage especially for the turbine housing side which absorbs hot exhaust gas directly to drive the turbine wheel. The cracking of turbine housing occurs frequently in the inlet flange location due to its very complex geometry and consequently complicated temperature and stress distribution, seriously affecting the normal operation of the engine. In the electric power industry, one of the most challenging tasks is to ensure the guaranteed lifetime. This paper proposes a novel turbine housing inlet flange design to control this type of failure effectively and improve the component lifetime and reliability. The novel design extends the inlet flange and includes the heat dissipation function as well.
Technical Paper

A Methodology to Predict Axial Clamping Force and Anti-rotating Torque for V-band Joint

V-band joint was originally developed during World War II by the Marmon Corporation for use in the aircraft industry. The U.S. Military used Marman clamp to secure the atomic bombs during transport at the end of the Second World War. It has been widely used in a variety of applications including pumps, engines, exhaust systems, turbochargers to offer effective fastening solutions and greatly simplify assembly and service. In addition, the orientation of the connected components can be easily adjusted according to customer's request. So it has been popularly adopted in the field of turbochargers. The axial clamping force and anti-rotating torque are two key parameters in turbocharger applications to verify the quality of the v-band joint during its operation. It is important for the v-band joint to have sufficient axial clamping force to prevent leakage and wheel damage.