Refine Your Search

Search Results

Journal Article

Analysis of Interaction between Autoignition and Strong Pressure Wave Formation during Knock in a Supercharged SI Engine Based on High Speed Photography of the End Gas

2017-11-15
2017-32-0119
Engine knock is the one of the main issues to be addressed in developing high-efficiency spark-ignition (SI) engines. In order to improve the thermal efficiency of SI engines, it is necessary to develop effective means of suppressing knock. For that purpose, it is necessary to clarify the mechanism generating pressure waves in the end-gas region. This study examined the mechanism producing pressure waves in the end-gas autoignition process during SI engine knock by using an optically accessible engine. Occurrence of local autoignition and its development process to the generation of pressures waves were analyzed under several levels of knock intensity. The results made the following points clear. It was observed that end-gas autoignition seemingly progressed in a manner resembling propagation due to the temperature distribution that naturally formed in the combustion chamber. Stronger knock tended to occur as the apparent propagation speed of autoignition increased.
Technical Paper

A Study of Autoignition Behavior and Knock Intensity in a SI Engine under Different Engine Speed by Using In-Cylinder Visualization

2017-11-05
2017-32-0050
Internal combustion engines have been required to achieve even higher efficiency in recent years in order to address environmental concerns. However, knock induced by abnormal combustion in spark-ignition engines has impeded efforts to attain higher efficiency. Knock characteristics during abnormal combustion were investigated in this study by in-cylinder visualization and spectroscopic measurements using a four-stroke air-cooled single-cylinder engine. The results revealed that knock intensity and the manner in which the autoignited flame propagated in the end gas differed depending on the engine speed.
Technical Paper

A Study of Ignition and Combustion in an SI Engine Using Multistage Pulse Discharge Ignition

2017-11-05
2017-32-0069
Lean-burn technology is regarded as one effective way to increase the efficiency of internal combustion engines. However, stable ignition is difficult to ensure with a lean mixture. It is expected that this issue can be resolved by improving ignition performance as a result of increasing the amount of energy discharged into the gaseous mixture at the time of ignition. There are limits, however, to how high ignition energy can be increased from the standpoints of spark plug durability, energy consumption and other considerations. Therefore, the authors have focused on a multistage pulse discharge (MSPD) ignition system that performs low-energy ignition multiple times. In this study, a comparison was made of ignition performance between MSPD ignition and conventional spark ignition (SI). A high-speed camera was used to obtain visualized images of ignition in the cylinder and a pressure sensor was used to measure pressure histories in the combustion chamber.
Technical Paper

Influence of Engine Speed on Autoignition and Combustion Characteristics in a Supercharged HCCI Engine

2017-11-05
2017-32-0090
Homogeneous Charge Compression Ignition (HCCI) combustion has attracted widespread interest because it achieves high efficiency and can reduce particulate matter (PM) and nitrogen oxide (NOx) emissions simultaneously. However, because HCCI engines lack a physical means of initiating ignition, it is difficult to control the ignition timing. Another issue of HCCI engines is that the combustion process causes the cylinder pressure to rise rapidly. The time scale is also important in HCCI combustion because ignition depends on the chemical reactions of the mixture. Therefore, we investigated the influence of the engine speed on autoignition and combustion characteristics in an HCCI engine. A four-stroke single-cylinder engine equipped with a mechanically driven supercharger was used in this study to examine HCCI combustion characteristics under different engine speeds and boost pressures.
Technical Paper

A Study on the Knocking Characteristics of an SI-HCCI Engine by Using In-Cylinder Visualization

2016-11-08
2016-32-0005
In-cylinder visualization of the entire bore area at an identical frame rate was used to investigate knocking conditions under spark ignition (SI) combustion and under Homogeneous Charge Compression Ignition (HCCI) combustion in the same test engine. A frequency analysis was also conducted on the measured pressure signals. The results revealed that a combustion regime accompanied by strong pressure oscillations occurred in both the SI and HCCI modes, which was presumably caused by rapid autoignition with attendant brilliant light emission that took place near the cylinder wall. It was found that the knocking timing was the dominant factor of this combustion regime accompanied by cylinder pressure oscillations in both the SI and HCCI combustion modes.
Technical Paper

A Study of Knocking in a Lean Mixture Using an Optically Accessible Engine

2016-11-08
2016-32-0002
Improving the thermal efficiency of internal combustion engines requires operation under a lean combustion regime and a higher compression ratio, which means that the causes of autoignition and pressure oscillations in this operating region must be made clear. However, there is limited knowledge of autoignition behavior under lean combustion conditions. Therefore, in this study, experiments were conducted in which the ignition timing and intake air temperature (scavenging temperature) of a 2-stroke optically accessible test engine were varied to induce autoignition under a variety of conditions. The test fuel used was a primary reference fuel with an octane rating of 90. The results revealed that advancing the ignition timing under lean combustion conditions also advanced the autoignition timing, though strong pressure oscillations on the other hand tended not to occur.
Technical Paper

Influence of Calcium-Based Additives with Different Properties on Abnormal Combustion in an SI Engine

2016-11-08
2016-32-0007
Technologies for further improving vehicle fuel economy have attracted widespread attention in recent years. However, one problem with some approaches is the occurrence of abnormal combustion such as low-speed pre-ignition (LSPI) that occurs under low-speed, high-load operating conditions. One proposed cause of LSPI is that oil droplets diluted by the fuel enter the combustion chamber and become a source of ignition. Another proposed cause is that deposits peel off and become a source of ignition. A four-stroke air-cooled single-cylinder engine was used in this study to investigate the influence of Ca-based additives having different properties on abnormal combustion by means of in-cylinder visualization and absorption spectroscopic measurements. The results obtained for neutral and basic Ca-based additives revealed that the former had an effect on advancing the time of autoignition.
Technical Paper

Influence of EGR on Knocking in an HCCI Engine Using an Optically Accessible Engine

2016-11-08
2016-32-0012
This study was conducted to investigate the influence of cooled recirculated exhaust gas (EGR) on abnormal combustion in a Homogenous Charge Compression Ignition (HCCI) engine. The condition of abnormal HCCI combustion accompanied by cylinder pressure oscillations was photographed with a high-speed camera using a 2-stroke optically accessible engine that enabled visualization of the entire bore area. Exhaust gas was cooled with a water-cooled intercooler for introducing cooled EGR. Experiments were conducted in which the quantity of cooled EGR introduced was varied and a comparison was made of the autoignition behavior obtained under each condition in order to investigate the influence of cooled EGR on abnormal HCCI combustion. The results revealed that cylinder pressure oscillations were reduced when cooled EGR was introduced. That reduction was found to be mainly ascribable to the effect of cooled EGR on changing the ignition timing.
Journal Article

Influence of Ca-, Mg- and Na-Based Engine Oil Additives on Abnormal Combustion in a Spark-Ignition Engine

2015-11-17
2015-32-0771
One issue of downsized and supercharged engines is low-speed pre-ignition (LSPI) that occurs in the low-speed and high-load operating region. One proposed cause of LSPI is the influence of the engine oil and its additives. However, the effect of engine oil additives on pre-ignition and the mechanism involved are still not fully understood. This study investigated the influence of engine oil additives on abnormal combustion in a spark-ignition engine. A four-stroke air-cooled single-cylinder engine with a side valve arrangement was used in conducting combustion experiments. The research methods used were in-cylinder pressure analysis, in-cylinder visualization and absorption spectroscopic analysis. Engine oil additives were mixed individually at a fixed concentration into a primary reference fuel with an octane number of 50 and their effect on knocking was investigated.
Technical Paper

Influence of Internal EGR on Knocking in an HCCI Engine

2015-11-17
2015-32-0807
Homogeneous Charge Compression Ignition (HCCI) engines have attracted much attention and are being widely researched as engines characterized by low emissions and high efficiency. However, one issue of HCCI engines is their limited operating range because of the occurrence of rapid combustion at high loads and misfiring at low loads. It is known that knocking accompanied by in-cylinder pressure oscillations also occurs in HCCI engines at high loads, similar to knocking seen in spark-ignition engines. In this study, HCCI combustion accompanied by in-cylinder pressure oscillations was visualized by taking high-speed photographs of the entire bore area. In addition, the influence of internal exhaust gas circulation (EGR) on HCCI knocking was also investigated. The visualized combustion images revealed that rapid autoignition occurred in the end-gas region during the latter half of the HCCI combustion process when accompanied by in-cylinder pressure oscillations.
Technical Paper

Experimental and Numerical Study of HCCI Combustion using Cooled EGR

2015-11-17
2015-32-0770
Unresolved issues of Homogeneous Charge Compression Ignition (HCCI) combustion include an extremely rapid pressure rise on the high load side and resultant knocking. Studies conducted to date have examined ways of expanding the region of stable HCCI combustion on the high load side such as by applying supercharging or recirculating exhaust gas (EGR). However, the effect of applying EGR gas to supercharged HCCI combustion and the mechanisms involved are not fully understood. In this study, the effect of EGR gas components on HCCI combustion was investigated by conducting experiments in which external EGR gas was applied to supercharged HCCI combustion and also experiments in which nitrogen (N2) and carbon dioxide (CO2) were individually injected into the intake air pipe to simulate EGR gas components. In addition, HCCI combustion reactions were analyzed by conducting chemical kinetic simulations under the same conditions as those of the experiments.
Journal Article

A Study of the Behavior of In-Cylinder Pressure Waves under HCCI Knocking by using an Optically Accessible Engine

2015-09-01
2015-01-1795
This study investigated the origin of knocking combustion accompanied by pressure wave and strong pressure oscillations in a Homogeneous Charge Compression Ignition (HCCI) engine. Experiments were conducted with a two-stroke single cylinder optically accessible engine that allowed the entire bore area to be visualized. The test fuel used was n-heptane. The equivalence ratio and intake temperature were varied to induce a transition from moderate HCCI combustion to extremely rapid HCCI combustion accompanied by in-cylinder pressure oscillations. Local autoignition and pressure wave behavior under each set of operating conditions were investigated in detail on the basis of high-speed in-cylinder visualization and in-cylinder pressure analysis. As a result, under conditions where strong knocking occurs, a brilliant flame originates from the burned gas side in the process where the locally occurring autoignition gradually spreads to multiple locations.
Journal Article

Abnormal Combustion Induced by Combustion Chamber Deposits Derived from Engine Oil Additives in a Spark-Ignited Engine

2014-11-11
2014-32-0091
Although metallic compounds are widely known to affect combustion in internal combustion engines, the potential of metallic additives in engine oils to initiate abnormal combustion has been unclear. In this study, we investigated the influence of combustion chamber deposits derived from engine oil additives on combustion in a spark-ignited engine. We used a single-cylinder four-stroke engine, and measured several combustion characteristics (e.g., cylinder pressure, in-cylinder ultraviolet absorbance in the end-gas region, and visualized flame propagation) to evaluate combustion anomalies. To clarify the effects of individual additive components, we formed combustion products of individual additives in a combustion chamber prior to measuring combustion characteristics. We tested three types of metallic additives: a calcium-based detergent, a zinc-based antiwear agent, and a molybdenum-based friction modifier.
Technical Paper

Study of Supercharged Gasoline HCCI Combustion by Using Spectroscopic Measurements and FT-IR Exhaust Gas Analysis

2014-11-11
2014-32-0004
One issue of Homogeneous Charge Compression Ignition (HCCI) engines that should be addressed is to suppress rapid combustion in the high-load region. Supercharging the intake air so as to form a leaner mixture is one way of moderating HCCI combustion. However, the specific effect of supercharging on moderating HCCI combustion and the mechanism involved are not fully understood yet. Therefore, experiments were conducted in this study that were designed to moderate rapid combustion in a test HCCI engine by supercharging the air inducted into the cylinder. The engine was operated under high-load levels in a supercharged state in order to make clear the effect of supercharging on expanding the stable operating region in the high-load range. HCCI combustion was investigated under these conditions by making in-cylinder spectroscopic measurements and by analyzing the exhaust gas using Fourier transform infrared (FT-IR) spectroscopy.
Journal Article

A Study of HCCI Knocking Accompanied by Pressure Oscillations Based on Visualization of the Entire Bore Area

2014-10-13
2014-01-2664
Knocking combustion experiments were conducted in this study using a test engine that allowed the entire bore area to be visualized. The purpose was to make clear the detailed characteristics of knocking combustion that occurs accompanied by cylinder pressure oscillations when a Homogeneous Charge Compression Ignition (HCCI) engine is operated at high loads. Knocking combustion was intentionally induced by varying the main combustion period and engine speed. Under such conditions, knocking in HCCI combustion was investigated in detail on the basis of cylinder pressure analysis, high-speed photography of the combustion flame and spectroscopic measurement of flame light emissions. The results revealed that locally occurring autoignition took place rapidly at multiple locations in the cylinder when knocking combustion occurred. In that process, the unburned end gas subsequently underwent even more rapid autoignition, giving rise to cylinder pressure oscillations.
Journal Article

Visualization and Spectroscopic Measurement of Knocking Combustion Accompanied by Cylinder Pressure Oscillations in an HCCI Engine

2013-10-15
2013-32-9166
Combustion experiments were conducted with an optically accessible engine that allowed the entire bore area to be visualized for the purpose of making clear the characteristics that induce extremely rapid HCCI combustion and knocking accompanied by cylinder pressure oscillations. The HCCI combustion regime was investigated in detail by high-speed in-cylinder visualization of autoignition and combustion and emission spectroscopic measurements. The results revealed that increasing the equivalence ratio and advancing the ignition timing caused the maximum pressure rise rate and knocking intensity to increase. In moderate HCCI combustion, the autoignited flame was initially dispersed temporally and spatially in the cylinder and then gradually spread throughout the entire cylinder.
Technical Paper

An Application of Cellulosic Liquefaction Fuel for Diesel Engine - Improvement of Fuel Property by Cellulosic Liquefaction with Plastics -

2013-10-15
2013-32-9174
There are few investigations to change wood biomasses to the industrially available energy, so that a new conversion technology of biomass to liquid fuel has been established by the direct liquefaction process. However, cellulosic liquefaction fuel (for short CLF) cold not mixed with diesel fuel. In this study, the plastic was mixed with wood to improve the solubility of CLF to diesel fuel. CLF made by the direct co-liquefaction process could be stably and completely mixed with diesel fuel in any mixing ratio and CLF included 2 wt.% of oxygen. The test engine was an air-cooled, four-stroke, single cylinder, direct fuel injection diesel engine. In the engine starting condition test, the ignition timing of 5 wt.% CLF mixed diesel fuel was slightly delayed at immediately after the engine started, however the ignition timing was almost the same as diesel fuel after the engine was warmed-up.
Technical Paper

A Study of the Effects of Varying the Supercharging Pressure and Fuel Octane Number on Spark Ignition Engine Knocking using Spectroscopic Measurement and In-cylinder Visualization

2013-10-15
2013-32-9030
Engine downsizing with a turbocharger / supercharger has attracted attention as a way of improving the fuel economy of automotive gasoline engines, but this approach can be frustrated by the occurrence of abnormal combustion. In this study, the factors causing abnormal combustion were investigated using a supercharged, downsized engine that was built by adding a mechanical supercharger. Combustion experiments were conducted in which the fuel octane number and supercharging pressure were varied while keeping the engine speed, equivalence ratio and intake air temperature constant. In the experiments, a visualization technique was applied to photograph combustion in the combustion chamber, absorption spectroscopy was used to investigate the intermediate products of combustion, and the cylinder pressure was measured. The experimental data obtained simultaneously were then analyzed to examine the effects on combustion.
Technical Paper

A Study on the Compression Ignition Characteristics of FAME for Low Compression Ratio Diesel Engine

2012-10-23
2012-32-0010
The purpose of this study is to clarify ignition characteristics and engine performance of FAME for 4-stroke diesel engine in low compression ratios. Diesel fuel and coconut oil methyl ester (CME) were selected as test fuels, because CME consisted of saturate FAMEs which were good ignition characteristics. To reduce the compression ratio, thin copperplates were inserted between cylinder head and cylinder block and the compression ratio was reduced from 20.6 that was standard to 15. The engine starting test and an ordinary engine performance test were made at 3600 min.-₁. In engine starting test, the engine was soaked at room temperature and the ignition timing of diesel fuel was remarkably delayed compared with CME. When the compression ratio was 16, for diesel fuel, the misfiring cycles were included during engine warming up. In case of 15 of compression ratio, the engine could not be started by diesel fuel; however the engine could be run by CME.
Technical Paper

Analysis of the Effects of a Higher Compression Ratio on HCCI Combustion Characteristics using In-cylinder Visualization and Spectroscopic Measurement

2012-10-23
2012-32-0078
Homogenous Charge Compression Ignition (HCCI) combustion experiments were conducted in this study using a single-cylinder test engine fitted with a sapphire observation window to facilitate visualization of the entire cylinder bore area. In addition to in-cylinder visualization of combustion, spectroscopic measurements were made of light emission and absorption in the combustion chamber to investigate autoignition behavior in detail. Engine firing experiments were conducted to visualize HCCI combustion over a wide range of compression ratios from 12:1 to 22:1. The results showed that increasing the compression ratio advanced the ignition timing and increased the maximum pressure rise rate, making it necessary to moderate combustion. It was also found that autoignition can be induced even in a mixture lean enough to cause misfiring by raising the intake air temperature so as to advance the overall combustion process.
X