Refine Your Search

Topic

Search Results

Technical Paper

Kinetic Modeling of Ammonia-SCR and Experimental Studies over Monolithic Cu-ZSM-5 Catalyst

2019-01-15
2019-01-0024
Ammonia-selective catalytic reduction (SCR) systems have been introduced commercially in diesel vehicles, however catalyst systems with higher conversion efficiency and better control characteristics are required to know the actual emissions during operation and the emissions in random test cycles. Computational fluid dynamics (CFD) is an effective approach when applied to SCR catalyst development, and many models have been proposed, but these models need experimental verification and are limited in the situations they apply to. Further, taking account of redox cycle is important to have better accuracy in transient operation, however there are few models considering the cycle. Model development considering the redox reactions in a zeolite catalyst, Cu-ZSM-5, is the object of the research here, and the effects of exhaust gas composition on the SCR reaction and NH3 oxidation at high temperatures are investigated.
Technical Paper

Performance Improvements in a Natural Gas Dual Fuel Compression Ignition Engine with 250 MPa Pilot Injection of Diesel Fuel as an Ignition Source

2016-10-17
2016-01-2306
The engine performance and the exhaust gas emissions in a dual fuel compression ignition engine with natural gas as the main fuel and a small quantity of pilot injection of diesel fuel with the ultra-high injection pressure of 250 MPa as an ignition source were investigated at 0.3 MPa and 0.8 MPa IMEP. With increasing injection pressure the unburned loss decreases and the thermal efficiency improves at both IMEP conditions. At the 0.3 MPa IMEP the THC and CO emissions are significantly reduced when maintaining the equivalence ratio of natural gas with decreasing the volumetric efficiency by intake gas throttling, but the NOx emissions increase and excessive intake gas throttling results in a decrease in the indicated thermal efficiency. Under the 250 MPa pilot injection condition simultaneous reductions in the NOx, THC, and CO emissions can be established with maintaining the equivalence ratio of natural gas by intake gas throttling.
Technical Paper

Semi-Premixed Diesel Combustion with Twin Peak Shaped Heat Release Using Two-Stage Fuel Injection

2016-04-05
2016-01-0741
Characteristics of semi-premixed diesel combustion with a twin peak shaped heat release (twin combustion) were investigated under several in-cylinder gas conditions in a 0.55 L single cylinder diesel engine with common-rail fuel injection, super-charged, and with low pressure loop cooled EGR. The first-stage combustion fraction, the second injection timing, the intake oxygen concentration, and the intake gas pressure influence on thermal efficiency related parameters, the engine noise, and the exhaust gas emissions was systematically examined at a middle engine speed and load condition (2000 rpm, 0.7 MPa IMEP). The twin peak shaped heat release was realized with the first-stage premixed combustion with a sufficient premixing duration from the first fuel injection and with the second fuel injection taking place just after the end of the first-stage combustion.
Technical Paper

Development of a Micro-Reactor HC-SCR System and the Evaluation of NOx Reduction Characteristics

2015-09-01
2015-01-2021
To reduce NOx emissions from diesel engines, the urea-SCR (selective catalytic reduction) system has been introduced commercially. In urea-SCR, the freezing point of the urea aqueous solution, the deoxidizer, is −11°C, and the handling of the deoxidizer under cold weather conditions is a problem. Further, the ammonia escape from the catalyst and the generation of N2O emissions are also problems. To overcome these disadvantages of the urea-SCR system, the addition of a hydrocarbon deoxidizer has attracted attention. In this paper, a micro-reactor SCR system was developed and attached to the exhaust pipe of a single cylinder diesel engine. With the micro-reactor, the catalyst temperature, quantity of deoxidizer, and the space velocity can be controlled, and it is possible to use it with gas and liquid phase deoxidizers. The catalyst used in the tests reported here is Ag(1wt%)-γAl2O3.
Journal Article

Combustion Characteristics of Emulsified Blends of Water and Diesel Fuel in a Diesel Engine with Cooled EGR and Pilot Injection

2013-10-15
2013-32-9022
Water and diesel fuel emulsions containing 13% and 26% water by volume were investigated in a modern diesel engine with relatively early pilot injection, supercharging, and cooled EGR. The heat release from the pilot injection with water emulsions is retarded toward the top dead center due to the poor ignitability, which enables larger pilot and smaller main injection quantities. This characteristic results in improvements in the thermal efficiency due to the larger heat release near the top dead center and the smaller afterburning. With the 26% water emulsion, mild, smokeless, and very low NOx operation is possible at an optimum pilot injection quantity and 15% intake oxygen with EGR at or below 0.9 MPa IMEP, a condition where large smoke emissions are unavoidable with regular unblended diesel fuel. Heat transfer analysis with Woschni's equation did not show the decrease in cooling loss with the water emulsion fuels.
Technical Paper

Identification of Factors Influencing Premixed Diesel Engine Noise and Mechanism of Noise Reduction by EGR and Supercharging

2013-04-08
2013-01-0313
To determine the engine noise reduction methods, an engine noise research was conducted experimentally with a PCCI diesel engine. The engine employed in the experiments was a supercharged, single-cylinder DI diesel engine with a high pressure common rail fuel injection system. The engine noise was sampled by two microphones and the sampled engine noise was averaged and analyzed by an FFT sound analyzer. The engine was equipped with a pressure transducer and the combustion noise was calculated from the power spectrum of the FFT analysis of the in-cylinder pressure wave form and the cross power spectrum of the sound pressure of the engine noise. It is well known that the maximum pressure rise rate is the main parameter related to the engine noise. The PCCI engine was operated at a 1.0 MPa/°CA maximum pressure rise rate to eliminate the effects of the maximum pressure rise rate, and parameters which had the dominant effect on engine noise and combustion noise were determined.
Technical Paper

Visualization and Heat Release Analysis of Premixed Diesel Combustion with Various Fuel Ignitabilities and Oxygen Concentrations in a Constant Volume Combustion Vessel

2013-04-08
2013-01-0899
Low NOx and soot free premixed diesel combustion can be realized by increasing ignition delays in low oxygen atmospheres, as well as the combustion here also depends on fuel ignitability. In this report single intermittent spray combustion with primary reference fuels and a normal heptane-toluene blend fuel under several oxygen concentrations in a constant volume combustion vessel was analyzed with high-speed color video and pressure data. Temperature and KL factor distributions are displayed with a 2-D two-color method. The results show that premixing is promoted with a decrease in oxygen concentration, and the local high temperature regions, above 2200 K, as well as the duration of their appearance decreases with the oxygen concentration. With normal heptane, mild premixed diesel combustion can be realized at 15 vol% oxygen and there is little luminous flame.
Journal Article

Combustion and Emissions with Bio-alcohol and Nonesterified Vegetable Oil Blend Fuels in a Small Diesel Engine

2012-10-23
2012-32-0017
Combustion and exhaust gas emissions of alcohol and vegetable oil blends including a 20% ethanol + 40% 1-butanol + 40% vegetable oil blend and a 50% 1-butanol + 50% vegetable oil blend were examined in a single cylinder, four-stroke cycle, 0.83L direct injection diesel engine, with a supercharger and a common rail fuel injection system. A 50% diesel oil + 50% vegetable oil blend and regular unblended diesel fuel were used as reference fuels. The boost pressure was kept constant at 160 kPa (absolute pressure), and the cooled low pressure loop EGR was realized by mixing with a part of the exhaust gas. Pilot injection is effective to suppress rapid combustion due to the lower ignitability of the alcohol and vegetable oil blends. The effects of reductions in the intake oxygen concentration with cooled EGR and changes in the fuel injection pressure were investigated for the blended fuels.
Technical Paper

HCCI Combustion Control by DME-Ethanol Binary Fuel and EGR

2012-09-10
2012-01-1577
The HCCI engine offers the potential of low NOx emissions combined with diesel engine like high efficiency, however HCCI operation is restricted to low engine speeds and torques constrained by narrow noise (HCCI knocking) and misfiring limits. Gasoline like fuel vaporizes and mixes with air, but the mixture may auto-ignite at the same time, leading to heavy HCCI knocking. Retarding the CA50 (the crank angle of the 50% burn) is well known as a method to slow the maximum pressure rise rate and reduce HCCI knocking. The CA50 can be controlled by the fuel composition, for example, di-methyl ether (DME), which is easily synthesized from natural gas, has strong low temperature heat release (LTHR) characteristics and ethanol generates strong LTHR inhibitor effects. The utilization of DME-ethanol binary blended fuels has the potential to broaden the HCCI engine load-speed range.
Technical Paper

Effects of EGR and Pilot Injection on Characteristics of Combustion and Emissions of Diesel Engines with Low Ignitability Fuel

2012-04-16
2012-01-0853
Characteristics of diesel combustion with low cetane number fuels with similar distillation temperatures to ordinary diesel fuel, including fuels with cetane number 32 and 39 (LC32, LC39), and a blend of n-cetane (n-hexadecane) and iso-cetane (2, 2, 4, 4, 6, 8, 8-heptamethylnonane) with cetane number 32 (CN32), were investigated. The effects of cooled exhaust gas recirculation (EGR) and pilot injection on characteristics of combustion and exhaust gas emissions with these fuels were examined in a naturally aspirated, single cylinder, diesel engine equipped with a common-rail fuel injection system. Even with the low cetane number fuels, quiet combustion with low levels of exhaust gas emissions comparable to ordinary diesel fuel was established by suitable control of intake oxygen levels and pilot injections.
Technical Paper

Combustion Characteristics of Emulsified Blends of Aqueous Ethanol and Diesel Fuel in a Diesel Engine with High Rates of EGR and Split Fuel Injections

2011-08-30
2011-01-1820
Silent, clean, and efficient combustion was realized with emulsified blends of aqueous ethanol and diesel fuel in a DI diesel with pilot injection and cooled EGR. The pilot injection sufficiently suppressed the rapid combustion to acceptable levels. The thermal efficiency with the emulsified fuel improved as the heat release with the pilot injection was retarded to near top dead center, due to poor ignitability and also due to a reduction in afterburning. With the emulsified fuel containing 40 vol% ethanol and 10 vol% water (E40W10), the smokeless operation range can be considerably extended even under low fuel injection pressure or low intake oxygen content conditions.
Journal Article

Improvement in DME-HCCI Combustion with Ethanol as a Low-Temperature Oxidation Inhibitor

2011-08-30
2011-01-1791
Port injection of ethanol addition as an ignition inhibitor was implemented to control ignition timing and expand the operating range in DME fueled HCCI combustion. The ethanol reduced the rate of low-temperature oxidation and consequently delayed the onset of the high-temperature reaction with ultra-low NOx over a wide operating range. Along with the ethanol addition, changes in intake temperature, overall equivalence ratio, and engine speed are investigated and shown to be effective in HCCI combustion control and to enable an extension of operation range. A chemical reaction analysis was performed to elucidate details of the ignition inhibition on low-temperature oxidation of DME-HCCI combustion.
Journal Article

Analysis of the Trade-off between Soot and Nitrogen Oxides in Diesel-Like Combustion by Chemical Kinetic Calculation

2011-08-30
2011-01-1847
This study makes use of the detailed mechanisms of n-heptane combustion, from gas reactions to soot particle formation and oxidation, and a two-stage model based on the CHEMKIN reactor network is developed and used to investigate the trade-off between soot and NOx emissions. The effects of the equivalence ratio, EGR, ambient pressure and temperature, and initial particle diameter are observed for various residence times. The results show that high rates of NOx formation are unavoidable under conditions where high reduction rates of soot particles are obtained. This suggests that suppression of the amount of soot during the formation stage is essential for simultaneous reductions in engine-out soot and NOx emissions.
Technical Paper

Improvements to Premixed Diesel Combustion with Ignition Inhibitor Effects of Premixed Ethanol by Intake Port Injection

2010-04-12
2010-01-0866
Premixed diesel combustion modes including low temperature combustion and MK combustion are expected to realize smokeless and low NOx emissions. As ignition must be delayed until after the end of fuel injection to establish these combustion modes, methods for active ignition control are being actively pursued. It is reported that alcohols including methanol and ethanol strongly inhibit low temperature oxidation in HCCI combustion offering the possibility to control ignition with alcohol induction. In this research improvement of diesel combustion and emissions by ethanol intake port injection for the promotion of premixing of the in-cylinder injected diesel fuel, and by increased EGR for the reduction of combustion temperature.
Technical Paper

Characteristics of Smokeless Low Temperature Diesel Combustion in Various Fuel-Air Mixing and Expansion of Operating Load Range

2009-04-20
2009-01-1449
The characteristics of smokeless low temperature diesel combustion in various fuel-air mixing was investigated by engine tests with high rates of cooled exhaust gas recirculation (EGR), three compression ratios, and fuels of various cetane numbers, as well as by computational fluid dynamics (CFD) simulation of the in-cylinder distributions of mixture concentration and temperature. The results show that besides combustion temperature, fuel-air mixing is also vital to efficient, smokeless, and low NOx diesel combustion. Smokeless and low NOx diesel combustion can be realized even with insufficient fuel-air mixing as long as the combustion temperature is sufficiently low. However low combustion temperature and insufficient oxygen due to ultra-high EGR cause very high UHC and CO emissions, and a severe deterioration in combustion efficiency.
Journal Article

Effect of Exhaust Catalysts on Regulated and Unregulated Emissions from Low Temperature Diesel Combustion with High Rates of Cooled EGR

2008-04-14
2008-01-0647
Unregulated emissions from a DI diesel engine with ultra-high EGR low temperature combustion were analyzed using Fourier transform infrared (FTIR) spectroscopy and the reduction characteristics of both regulated and unregulated emissions by two exhaust catalysts were investigated. With ultra-high EGR suppressing the in-cylinder soot and Nox formation as well as with the exhaust catalysts removing the engine-out THC and CO emissions, clean diesel operation in terms of ultra-low regulated emissions (Nox, PM, THC, and CO) is established in an operating range up to 50% load. To realize smokeless low temperature combustion at higher loads, EGR has to be increased to a rate with the overall (average) excess air ratio less than the stoichiometric ratio.
Technical Paper

Improvements in Low Temperature Diesel Combustion with Blending ETBE to Diesel Fuel

2007-07-23
2007-01-1866
The effects of blending ETBE to diesel fuel on the characteristics of low temperature diesel combustion and exhaust emissions were investigated in a naturally-aspirated DI diesel engine with large rates of cooled EGR. Low temperature smokeless diesel combustion in a wide EGR range was established with ETBE blended diesel fuel as mixture homogeneity is promoted with increased premixed duration due to decreases in ignitability as well as with improvement in fuel vaporization due to the lower boiling point of ETBE. Increasing the ETBE content in the fuel helps to suppress smoke emissions and maintain efficient smokeless operation when increasing EGR, however a too high ETBE content causes misfiring at larger rates of EGR. While the NOx emissions increase with increases in ETBE content at high intake oxygen concentrations, NOx almost completely disappears when reducing the intake oxygen content below 14 % with cooled EGR.
Technical Paper

Mechanisms in Reducing Smoke and NOx from BDF Combustion by Ethanol Blending and EGR

2007-04-16
2007-01-0622
Palm oil has the important advantage of productivity compared to other vegetable oils such as rapeseed oil and soybean oil. However, the cold flow performance of palm oil methyl ester (PME) is poorer than other vegetable oil based biodiesel fuels. Previous research by the authors has shown that ethanol blending into PME improves the cold flow performance and considerably reduces smoke emission. The reduced smoke may be expected to allow an expansion in the EGR limit and lead to reduced NOx. This paper experimentally analyses the influence of EGR on smoke and NOx emissions from the diesel combustion with PME/ethanol blended fuel. The mechanisms in the smoke reduction are also analyzed.
Technical Paper

Characterization of Low Temperature Diesel Combustion with Various Dilution Gases

2007-04-16
2007-01-0126
The effects of intake dilution with various dilution gases including nitrogen, argon, and carbon dioxide on low temperature diesel combustion were investigated in a naturally aspirated DI diesel engine to understand the mechanism of the simultaneous reductions in smoke and NOx with ultra-high EGR. NOx almost completely disappears with the intake oxygen concentration diluted below 16% regardless of the kind of dilution gas. Smoke emissions decrease with increased heat capacity of the charged gas due to promotion of mixture homogeneity with longer ignition delays. Intake dilution with the 36% CO2 + 64% Ar mixture which has a similar specific heat capacity as N2 shows lower smoke emissions than with N2. Chemical kinetics analysis shows that carbon dioxide may help to reduce NOx and soot by lowering the reaction temperature as well as by changing the concentrations of some radicals or/and species related to soot and NOx formation.
Technical Paper

Dependence of Ultra-High EGR Low Temperature Diesel Combustion on Fuel Properties

2006-10-16
2006-01-3387
The dependence of ultra-high EGR low temperature diesel combustion on fuel properties including cetane number and distillation temperature was investigated with a single-cylinder, naturally aspirated, 1.0 L, common rail DI diesel engine. Decreasing cetane number in fuels significantly reduces smoke emission due to an extension in ignition delay and the subsequent improvement in mixture formation. Smokeless combustion, ultra-low NOx, and efficient operating range with regard to EGR and IMEP are significantly extended by decreasing fuel cetane number. Changes in fuel distillation temperature do not result in significant differences in smoke emission and thermal efficiency for ultra-high EGR operation, and smokeless operation is established even with higher distillation temperature fuels as long as fuel cetane number is sufficiently low.
X