Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Study of the Mechanism of High-Speed Knocking in a Two-Stroke SI Engine with High Compression Ratio

2023-10-24
2023-01-1824
Experimental methods and numerical analysis were used to investigate the mechanism of high-speed knocking that occurs in small two-stroke engines. The multi-ion probe method was used in the experiments to visualize flame propagation in the cylinder. The flame was detected by 14 ion probes grounded in the end gas region. A histogram was made of the order in which flames were detected. The characteristics of combustion in the cylinder were clarified by comparing warming up and after warming up and by extracting the features of the cycle in which knocking occurred. As a result, regions of fast flame propagation and regions prone to auto-ignition were identified. In the numerical analysis, flow and residual gas distribution in the cylinder, flame propagation and self-ignition were visualized by 3D CFD using 1D CFD calculation results as boundary conditions and initial conditions.
Technical Paper

Modeling of Diluted Combustion Characteristics of Gasoline Alternative Fuels Using Single Cylinder Engine

2023-10-24
2023-01-1839
For the survival of internal combustion engines, the required research right now is for alternative fuels, including drop-ins. Certain types of alternative fuels have been estimated to confirm the superiority in thermal efficiency. In this study, using a single-cylinder engine, olefin and oxygenated fuels were evaluated as a drop-in fuel considering the fuel characteristic parameters. Furthermore, the effect of various additive fuels on combustion speed was expressed using universal characteristics parameters.
Technical Paper

Numerical Investigation of Knocking in a Small Two-Stroke Engine with a High Compression Ration to Improve Thermal Efficiency

2023-09-29
2023-32-0079
This study aimed to achieve both a high compression ratio and low knock intensity in a two-stroke engine. Previous research has suggested that knock intensity can be reduced by combining combustion chamber geometry and scavenging passaging design for the same engine specifications with a compression ratio of 13.7. In this report, we investigate whether low knock intensity can be achieved at compression ratios of 14.4 and 16.8 by adjusting the combustion chamber geometry and scavenging passage design. As a result, the mechanism by which combustion chamber geometry and scavenging passage design change knock intensity was clarified.
Technical Paper

Effect of Olefin Component Mixed to Gasoline on Thermal Efficiency in EGR Diluted Conditions Using Single-Cylinder Engine

2023-09-29
2023-32-0084
In internal combustion engine development, the ongoing research can be mainly classified into two categories based on the purpose: limiting exhaust emissions and searching for alternative fuels. One of the effective approaches reduce emissions is the improvement of thermal efficiency. Certain types of alternative fuels derived from renewable resources were estimated to confirm the thermal efficiency. This study uses a single-cylinder engine added with olefin and oxygenated additive fuel, such as 1-hexene, ethanol, and ETBE, to evaluate the parameters that affect thermal efficiency. Furthermore, the effects of various additive fuels are summarized and essential information is provided for determining next- generation fuel composition.
Technical Paper

Improvement of Post-Oxidation for Low-Emission Engines through 3D-CFD Virtual Development

2023-08-28
2023-24-0107
There is a growing need for low-emissions concepts due to stricter emission regulations, more stringent homologation cycles, and the possibility of a ban on new engines by 2035. Of particular concern are the conditions during a cold start, when the Three-Way Catalyst is not yet heated to its light-off temperature. During this period, the catalyst remains inactive, thereby failing to convert pollutants. Reducing the time needed to reach this temperature is crucial to comply with the more stringent emissions standards. The post oxidation by means of secondary air injection, illustrated in this work, is a possible solution to reduce the time needed to reach the above-mentioned temperature. The strategy consists of injecting air into the exhaust manifold via secondary air injectors to oxidize unburned fuel that comes from a rich combustion within the cylinder.
Technical Paper

Numerical and Experimental Analysis of Abnormal Combustion in a SI Gasoline Engine with a Re-Entrant Piston Bowl and Swirl Flow

2022-01-09
2022-32-0038
Some SI (spark-ignition) engines fueled with gasoline for industrial machineries are designed based on the conventional diesel engine in consideration of the compatibility with installation. Such diesel engine-based SI engines secure a combustion chamber by a piston bowl instead of a pent-roof combustion chamber widely applied for SI engines for automobiles. In the development of SI engines, because knocking deteriorates the power output and the thermal efficiency, it is essential to clarify causes of knocking and predict knocking events. However, there has been little research on knocking in diesel engine-based SI engines. The purpose of this study is to elucidate knocking phenomena in a gasoline engine with a re-entrant piston bowl and swirl flow numerically and experimentally. In-cylinder visualization and pressure analysis of knock onset cycles have been experimentally performed. Locations of autoignition have been predicted by 3D-CFD analysis with detailed chemical reactions.
Technical Paper

Analysis of Cylinder to Cylinder Variations in a Turbocharged Spark Ignition Engine at lean burn operations

2022-01-09
2022-32-0044
In recent years, the improvement in the fuel efficiency and reduction in CO2 emission from internal combustion engines has been an urgent issue. The lean burn technology is one of the key technologies to improve thermal efficiency of SI engines. However, combustion stability deteriorates at lean burn operations. The reduction in cycle-to-cycle and cylinder-to-cylinder variations is one of the major issues to adapt the lean burn technique for production engines. However, the details of the causes and mechanisms for the combustion variations under the lean burn operations have not been cleared yet. The purpose of this study is to control cylinder to cylinder combustion variation. A conventional turbocharged direct injection SI engine was used as the test engine to investigate the effect of engine control parameters on the cylinder to cylinder variations. The engine speed is set at 2200 rpm and the intake pressure is set at 58, 78, 98 kPa respectively.
Technical Paper

Numerical Investigation of the Effect of Engine Speed and Delivery Ratio on the High-Speed Knock in a Small Two-Stroke SI Engine

2022-01-09
2022-32-0080
Knocking occurs within the high-speed range of small two-stroke engines used in handheld work equipment. High-speed knock may be affected by the engine speed and delivery ratio. However, evaluation of these factors independently using experimental methods is difficult. Therefore, in this study, these factors were independently evaluated using numerical calculations. The purpose of this study was to clarify the mechanism by which the intensity of high-speed knocking that occurs in small two-stroke engines becomes stronger. The results suggest that temperature inhomogeneity due to insufficient mixing of fresh air and previously burned gas may induce high-speed knocking in the operating range at high engine speeds.
Technical Paper

Investigation on Relationship between LSPI and Lube Oil Consumption and Its Countermeasure

2021-04-06
2021-01-0567
LSPI (Low speed pre-ignition) is a serious issue in highly boosted gasoline engines. The causes have been studied and lube oil affects the onset. In order to examine the effect of lubricating oil consumption on super knock caused by pre-ignition, measurements of in-cylinder pressure, temperature, oil consumption by sulfur trace at steady and transient conditions were conducted. Also, new piston ring pack was applied to reduce both of blow-by gas and oil consumption. As a result, accumulated oil during deceleration was found to cause pre-ignition after acceleration. The pre-ignition frequency is much higher than in steady condition, however, the amount of oil does not directly affect pre-ignition frequency, but dilution of oil and evaporation of oil/fuel and other parameters, such as temperature, pressure, and oil additives determine pre-ignition onset. In order to see the mechanism of pre-ignition onset, numerical simulations were conducted.
Technical Paper

In-Cylinder Optical Measurement for Analyzing Control Factor of Ignition Phenomena under Diluted Condition

2020-09-15
2020-01-2048
To increase thermal efficiency of internal combustion engines, dilution combustion systems, such as lean burn and exhaust gas recirculation systems, have been developed. These systems require spark-ignition coils generating large discharge current and discharge energy to achieve stable ignition under diluted mixture conditions. Several studies have clarified that larger discharge current increases spark-channel stretch and decreases the possibility of spark channel blow-off and misfire. However, these investigations do not mention the effect of larger discharge current and energy on the initial combustion period. The purpose of this study was to investigate the relation among dilution ratio, initial-combustion period, and coil specifications to clarify the control factor of the dilution limit.
Technical Paper

Performance Investigation of a PFI Gasoline Engine by Applying Various Kinds of Fuel Injectors

2020-01-24
2019-32-0546
In this report, the effect of injection specification, such as droplet size, lengths of nozzle tip and spray angle, on the engine performance was investigated using a 1.2 L port fuel injection (PFI) four-cylinder gasoline engine. The experimental conditions were selected to cover the daily operating mode, including the cold start and catalyst heating process. The experiments were conducted by varying not only the injectors but also the injection timing which was shifted from the exhaust to intake stroke. The results were evaluated by the fuel consumption and exhaust gas emissions. When these tests were conducted on a production engine, a carefully designed tumble generator was installed at the intake port to enhance the intake air flow. As a result, the injection specifications showed a potential to obtain less fuel consumption and lower engine-out emissions was evaluated.
Technical Paper

Effects of Coolant Temperature and Fuel Properties on Soot Emission from a Spark-ignited Direct Injection Gasoline Engine

2019-12-19
2019-01-2352
Effects of measurement method, coolant temperature and fuel composition on soot emissions were examined by engine experiments. By reducing the pressure fluctuation in the sampling line, the measured soot emissions with better stability and reproducibility could be obtained. With lower coolant temperatures, larger soot emissions were yielded at much advanced fuel injection timings. Compared to gasoline, soot emissions with a blend fuel of normal heptane, isooctane and toluene were significantly decreased, suggesting the amounts of aromatic components (toluene or others) should be increased to obtain a representative fuel for the predictive model of particulate matter in SIDI engines.
Technical Paper

Effects of Engine Operating Condition and Fuel Property on Pre-Ignition Phenomenon in a Highly Boosted Premixed Natural Gas Engine

2019-12-19
2019-01-2154
The stochastic pre-ignition phenomenon plays a vital role to limit the further increasing BMEP for natural gas engines. In this study, the pre-ignition propensities were examined in a highly boosted premixed natural gas engine by various engine loads and air/fuel ratios, as well as different methane number (MN) altered by hydrogen addition. A proper pre-ignition evaluation method was proposed referring to intake temperature. Moreover, the limits of in-cylinder temperature and pressure for the onset of pre-ignition were estimated. The results show that both higher IMEP and richer mixture conditions readily lead to pre-ignition. The significant increases of pre-ignition frequency and heavy-knocking pre-ignition cycle present with lowering MN.
Journal Article

Validation of Test Procedure for Measuring the Fuel Consumption of Production-Model FCVs

2019-04-02
2019-01-0382
Factors affecting the measurement of the fuel consumption of FCVs were analyzed to reveal their sensitivity. The method for measuring fuel consumption described in WLTP is to measure the hydrogen consumption by using an electric precision balance and off-vehicle tanks (not on-vehicle tanks). This is unique compared with conventional vehicles such as petrol-engine vehicles and pure-electric vehicles. Therefore, we examined the sensitivities of the effect of hydrogen consumption determination, the effect of hydrogen supply pipe design, and the effect of hydrogen supply pipe management. The experiments were conducted with two production models of FCVs having different FC management systems. The effects were quantitatively evaluated by comparing the fuel consumption rate driving in WLTC.
Technical Paper

Charge Transfer Pathways in Thermalization Process of a Resistive Particulate Matter Sensor

2019-02-08
2019-01-6501
Resistive particulate matter sensor (PMS) is a promising solution for the diagnosis of diesel/gasoline particulate filter (DPF/GPF) functionality. Frequently triggered regeneration of their sensing element, for cleaning the soot dendrites deposited on the surface, leads to experience high temperature and thermal stress and pose high risk of developing cracks in the electrodes or sensing substrate. A semiconductor with a dopant concentration of 100 ppm~10000 ppm is applied as a sensing element for PMS self-diagnosis. Upon cooling at air, the polarization doped-insulating layer in a resistive PMS starts to resume the electrical conductivity in the wake of experiencing high regeneration temperature, through the electron and hole directional mobility.
Technical Paper

0D Modeling of Real-Driving NOx Emissions for a Diesel Passenger Vehicle

2018-09-10
2018-01-1761
NOx emissions from diesel passenger vehicles affect the atmospheric environment. It is difficult to evaluate the NOx emissions influenced by environmental conditions such as humidity and temperature, traffic conditions, driving patterns, etc. In the authors’ previous study, real-driving experiments were performed on city and highway routes using a diesel passenger car with only an exhaust gas recirculation system. A statistical prediction model of NOx emissions was considered for simple estimations in the real world using instantaneous vehicle data measured by the portable emissions measurement system and global positioning system. The prediction model consisted of explanatory variables, such as velocity, acceleration, road gradient, and position of transmission gear. Using the explanatory variables, NOx emissions on the city and highway routes was well predicted using a diesel vehicle without NOx reduction devices.
Technical Paper

Fuel Stratification Using Twin-Tumble Intake Flows to Extend Lean Limit in Super-Lean Gasoline Combustion

2018-09-10
2018-01-1664
To drastically improve thermal efficiency of a gasoline spark-ignited engine, super-lean burn is a promising solution. Although, studies of lean burn have been made by so many researchers, the realization is blocked by a cycle-to-cycle combustion variation. In this study, based on the causes of cycle-to-cycle variation clarified by the authors’ previous study, a unique method to reduce the cycle-to-cycle variation is proposed and evaluated. That is, a bulk quench at early expansion stroke could be reduced by making slight fuel stratification inside the cylinder using the twin-tumble of intake flows. As a result, the lean limit was extended with keeping low NOx and moderate THC emissions, leading to higher thermal efficiency.
Technical Paper

Effect of Coolant Water and Intake Air Temperatures on Thermal Efficiency of Gasoline Engines

2017-11-05
2017-32-0116
An optimization of thermal management system in a gasoline engine is considered to improve thermal efficiency by minimizing the cost increase without largely changing the configuration of engine system. In this study, the influence of water temperature and intake air temperature on thermal efficiency were investigated using an inline four-cylinder 1.2L gasoline engine. In addition, one-dimensional engine simulations were conducted by using a software of GT-SUITE. Brake thermal efficiency for different engine speeds and loads could be quantitatively predicted with changing the cooling water temperature in the cylinder head. Then, in order to predict the improvement of the fuel consumption in actual use, vehicle mode running simulation and general-purpose engine transient mode simulation were carried out by GT-SUITE. As a result, it was found that by controlling the temperatures of the cooling water and intake gas, thermal efficiency can be improved by several percent.
Technical Paper

Analyses of Cycle-to-Cycle Variation of Combustion and In-Cylinder Flow in a Port Injection Gasoline Engine Using PIV and PLIF Techniques

2017-10-08
2017-01-2213
Reduction in the cycle-to-cycle variation (CCV) of combustion in internal combustion engines is required to reduce fuel consumption, exhaust emissions, and improve drivability. CCV increases at low load operations and lean/dilute burn conditions. Specifically, the factors that cause CCV of combustion are the cyclic variations of in-cylinder flow, in-cylinder distributions of fuel concentration, temperature and residual gas, and ignition energy. However, it is difficult to measure and analyze these factors in a production engine. This study used an optically accessible single-cylinder engine in which combustion and optical measurements were performed for 45 consecutive cycles. CCVs of the combustion and in-cylinder phenomena were investigated for the same cycle. Using this optically accessible engine, the volume inside the combustion chamber, including the pent-roof region can be observed through a quartz cylinder.
Technical Paper

Visualization of the Heat Transfer Surface of EGR Cooler to Examine Soot Adhesion and Abruption Phenomena

2017-03-28
2017-01-0127
Among the emerging technologies in order to meet ever stringent emission and fuel consumption regulations, Exhaust Gas Recirculation (EGR) system is becoming one of the prerequisites particularly for diesel engines. Although EGR cooler is considered to be an effective measure for further performance enhancement, exhaust gas soot deposition may cause degradation of the cooling. To address this issue, the authors studied the visualization of the soot deposition and removal phenomena to understand its behavior. Based on thermophoresis theory, which indicates that the effect of thermophoresis depends on the temperature difference between the gas and the wall surface exposed to the gas, a visualization method using a heated glass window was developed. By using glass with the transparent conductive oxide: tin-doped indium oxide, temperature of the heated glass surface is raised.
X