Refine Your Search

Topic

Search Results

Technical Paper

Effects of Coolant Temperature and Fuel Properties on Soot Emission from a Spark-ignited Direct Injection Gasoline Engine

2019-12-19
2019-01-2352
Effects of measurement method, coolant temperature and fuel composition on soot emissions were examined by engine experiments. By reducing the pressure fluctuation in the sampling line, the measured soot emissions with better stability and reproducibility could be obtained. With lower coolant temperatures, larger soot emissions were yielded at much advanced fuel injection timings. Compared to gasoline, soot emissions with a blend fuel of normal heptane, isooctane and toluene were significantly decreased, suggesting the amounts of aromatic components (toluene or others) should be increased to obtain a representative fuel for the predictive model of particulate matter in SIDI engines.
Technical Paper

0D Modeling of Real-Driving NOx Emissions for a Diesel Passenger Vehicle

2018-09-10
2018-01-1761
NOx emissions from diesel passenger vehicles affect the atmospheric environment. It is difficult to evaluate the NOx emissions influenced by environmental conditions such as humidity and temperature, traffic conditions, driving patterns, etc. In the authors’ previous study, real-driving experiments were performed on city and highway routes using a diesel passenger car with only an exhaust gas recirculation system. A statistical prediction model of NOx emissions was considered for simple estimations in the real world using instantaneous vehicle data measured by the portable emissions measurement system and global positioning system. The prediction model consisted of explanatory variables, such as velocity, acceleration, road gradient, and position of transmission gear. Using the explanatory variables, NOx emissions on the city and highway routes was well predicted using a diesel vehicle without NOx reduction devices.
Technical Paper

Degradation of DeNOx Performance of a Urea-SCR System in In-Use Heavy-Duty Vehicles Complying with the New Long-Term Regulation in Japan and Estimation of its Mechanism

2016-04-05
2016-01-0958
Degradation of the deNOx performance has been found in in-use heavy-duty vehicles with a urea-SCR system in Japan. The causes of the degradation were studied, and two major reasons are suggested here: HC poisoning and deactivation of pre-oxidation catalysts. Hydrocarbons that accumulated on the catalysts inhibited the catalysis. Although they were easily removed by a simple heat treatment, the treatment could only partially recover the original catalytic performance for the deNOx reaction. The unrecovered catalytic activity was found to result from the decrease in conversion of NO to NO2 on the pre-oxidation catalyst. The pre-oxidation catalyst was thus studied in detail by various techniques to reveal the causes of the degradation: Exhaust emission tests for in-use vehicles, effect of heat treatment on the urea-SCR systems, structural changes and chemical changes in active components during the deactivation were systematically investigated.
Technical Paper

Further Improvement in Brake Thermal Efficiency of a Single-Cylinder Diesel Engine by Means of Independent Control of Effective Compression and Expansion Ratios

2014-04-01
2014-01-1198
Heat loss reduction could be one of the most promising methods of thermal efficiency improvement for modern diesel engines. However, it is difficult to fully transform the available energy derived from a reduction of in-cylinder heat loss into shaft work, but it is rather more readily converted into higher exhaust heat loss. It may therefore be favorable to increase the effective expansion ratio of the engine, thereby maximizing the brake work, by transforming more of the enthalpy otherwise remaining at exhaust valve opening (EVO) into work. In general, the geometric compression ratio of a piston cylinder arrangement has to increase in order to achieve a higher expansion ratio, which is equal to a higher thermodynamic compression ratio.
Technical Paper

Reexamination of Multiple Fuel Injections for Improving the Thermal Efficiency of a Heavy-Duty Diesel Engine

2013-04-08
2013-01-0909
As a technology required for future commercial heavy-duty diesel engines, this study reexamines the potential of the multiple injection strategy for improving the thermal efficiency while maintaining low engine-out exhaust emissions with a high EGR rate of more than 50% and high boost pressure of 276.3 kPa abs under medium load conditions. The experiments were conducted with a single cylinder research engine. The engine was operated at BMEP of 0.8 MPa at a medium speed. Using multiple injections, the temporal and spatial in-cylinder temperature distribution was changed to investigate the effect on fuel consumption and exhaust emissions. The results showed that the multiple injection strategy combined with higher EGR rate could improve fuel consumption by about 3% due to the reduction of heat loss from the wall.
Technical Paper

A Study on N2O Formation Mechanism and Its Reduction in a Urea SCR System Employed in a DI Diesel Engine

2012-09-10
2012-01-1745
N₂O is known to have a significantly high global warming potential. We measured N₂O emissions in engine-bench tests by changing the NO/NH₃ ratio and exhaust gas temperature at the oxidation catalyst inlet in a heavy-duty diesel engine equipped with a urea SCR (selective catalytic reduction) system. The results showed that the peak N₂O production ratio occurred at an exhaust gas temperature of around 200°C and the maximum value was 84%. Moreover, the N₂O production ratio increased with increasing NO/NH₃. Thus, we concluded that N₂O is produced via the NO branching reaction. Based on our results, two methods were proposed to decrease N₂O formation. At low temperatures ~200°C, NO should be reduced by controlling diesel combustion to lower the contribution of NO to N₂O production. This is essential because the SCR system cannot reduce NOx at low temperatures.
Technical Paper

BSFC Improvement and NOx Reduction by Sequential Turbo System in a Heavy Duty Diesel Engine

2012-04-16
2012-01-0712
Reduction of exhaust emissions and BSFC has been studied using a high boost, a wide range and high-rate EGR in a Super Clean Diesel, six-cylinder heavy duty engine. In the previous single-turbocharging system, the turbocharger was selected to yield maximum torque and power. The selected turbocharger was designed for high boosting, with maximum pressure of about twice that of the current one, using a titanium compressor. However, an important issue arose in this system: avoidance of high boosting at low engine speed. A sequential and series turbo system was proposed to improve the torque at low engine speeds. This turbo system has two turbochargers of different sizes with variable geometry turbines. At low engine speed, the small turbocharger performs most of the work. At medium engine speed, the small turbocharger and large turbocharger mainly work in series.
Technical Paper

Effective BSFC and NOx Reduction on Super Clean Diesel of Heavy Duty Diesel Engine by High Boosting and High EGR Rate

2011-04-12
2011-01-0369
Reduction of exhaust emissions and BSFC was studied for high pressure, wide range, and high EGR rates in a Super-clean Diesel six-cylinder heavy duty engine. The GVW 25-ton vehicle has 10.52 L engine displacement, with maximum power of 300 kW and maximum torque of 1842 Nm. The engine is equipped with high-pressure fuel injection of a 200 MPa level common-rail system. A variable geometry turbocharger (VGT) was newly designed. The maximum pressure ratio of the compressor is about twice that of the previous design: 2.5. Additionally, wide range and a high EGR rate are achieved by high pressure-loop EGR (HP-EGR) and low pressure-loop EGR (LP-EGR) with described VGT and high-pressure fuel injection. The HP-EGR can reduce NOx concentrations in the exhaust pipe, but the high EGR rate worsens smoke. The HP-EGR system layout has an important shortcoming: it has great differences of the intake EGR gas amount into each cylinder, worsens smoke.
Technical Paper

Reduction of NOx and PM for a Heavy Duty Diesel Using 50% EGR Rate in Single Cylinder Engine

2010-04-12
2010-01-1120
For reducing NOx emissions, EGR is effective, but an excessive EGR rate causes the deterioration of smoke emission. Here, we have defined the EGR rate before the smoke emission deterioration while the EGR rate is increasing as the limiting EGR rate. In this study, the high rate of EGR is demonstrated to reduce BSNOx. The adapted methods are a high fuel injection pressure such as 200 MPa, a high boost pressure as 451.3 kPa at 2 MPa BMEP, and the air intake port that maintains a high air flow rate so as to achieve low exhaust emissions. Furthermore, for withstanding 2 MPa BMEP of engine load and high boosting, a ductile cast iron (FCD) piston was used. As the final effect, the installations of the new air intake port increased the limiting EGR rate by 5%, and fuel injection pressure of 200 MPa raised the limiting EGR rate by an additional 5%. By the demonstration of increasing boost pressure to 450 kPa from 400 kPa, the limiting EGR rate was achieved to 50%.
Technical Paper

Combustion Characteristics and Performance Increase of an LPG-SI Engine with Liquid Fuel Injection System

2009-11-02
2009-01-2785
Compared with petroleum fuel, liquefied petroleum gas (LPG) demonstrates advantages in low CO2 emission because of propane and butane, which are the main components of LPG, making H/C ratio higher. In addition, LPG is suitable for high efficient operation of a spark ignition (SI) engine due to its higher research octane number (RON). Because of these advantages, that is, diversity of energy source and reduction of CO2, in the past several years, LPG vehicles have widely used as the alternate to gasoline vehicles all over the world. Consequently, it is absolutely essential for the performance increase of LPG vehicles to comprehend the combustion characteristics of LPG and to obtain the guideline for engine design and calibration. In this study, an LPG-SI engine was built up by converting fuel supply system of an in-line 4-cylinder gasoline engine, which has 1997 cm3 displacement with MPI system, to LPG liquid fuel injection system [1].
Technical Paper

Effective NOx Reduction in High Boost, Wide Range and High EGR Rate in a Heavy Duty Diesel Engine

2009-04-20
2009-01-1438
The emission reduction from diesel engines is one of major issues in heavy duty diesel engines. Super Clean Diesel (SCD) Engine for heavy-duty trucks has also been researched and developed since 2002. The main specifications of the SCD Engine are six cylinders in-line and 10.5 l with a turbo-intercooled and cooled EGR system. The common rail system, of which the maximum injection pressure is 200 MPa, is adopted. The turbocharger is capable of increasing boost pressure up to 501.3 kPa. The EGR system consists of both a high-pressure loop (HP) EGR system and a low-pressure loop (LP) EGR system. The combination of these EGR systems reduces NOx and PM emissions effectively in both steady-state and transient conditions. The emissions of the SCD Engine reach NOx=0.2 g/kWh and PM=0.01 g/kWh with aftertreatment system. The adopted aftertreatment system includes a Lean NOx Trap (LNT) and Diesel Particulate Filter (DPF).
Technical Paper

Improvement of NOx Reduction Rate of Urea-SCR System by NH3 Adsorption Quantity Control

2008-10-06
2008-01-2498
A urea SCR system was combined with a DPF system to reduce NOx and PM in a four liters turbocharged with intercooler diesel engine. Significant reduction in NOx was observed at low exhaust gas temperatures by increasing NH3 adsorption quantity in the SCR catalyst. Control logic of the NH3 adsorption quantity for transient operation was developed based on the NH3 adsorption characteristics on the SCR catalyst. It has been shown that NOx can be reduced by 75% at the average SCR inlet gas temperature of 158 deg.C by adopting the NH3 adsorption quantity control in the JE05 Mode.
Technical Paper

Diesel Emissions Improvement by RME in a High Boost and EGR Single Cylinder Engine

2008-04-14
2008-01-1376
The biomass fuel is expected to solve the global warming due to a carbon neutral. A rapeseed oil methyl ester (RME) as biomass fuel was selected, and also a low sulfur diesel fuel is tested as reference fuel in this study. The experiments were carried out to improve diesel emissions and engine performance using high boost and high rate EGR system and a common rail injection system in a single cylinder engine. The diesel emissions and engine performance have been measured under the experimental conditions such as charging boost pressure from atmospheric pressure to 401.3kPa maximum and changing EGR rate from 0% to 40% maximum. RME contain about 10 mass % oxygen in the fuel molecule. Furthermore, RME does not contain aromatic hydrocarbons in the fuel. Due to these chemical properties, RME can be used at 40% high EGR condition.
Technical Paper

Detection of Deteriorated Catalyst on Vehicle under Actual Operation Conditions: Application of FFT Analysis to Signal Wave by the Dual Oxygen Sensors Method

2007-07-23
2007-01-1927
The object of this study is to investigate an on-board diagnostic method to detect the deterioration of a three-way catalyst (TWC) under actual vehicle operating conditions, including the acceleration state. The signal data of two oxygen sensors were processed by the fast Fourier transformation (FFT) method. As a result, we found that the power spectrum of the signal waves can be the index of catalyst deterioration degree. Furthermore, it was confirmed that the difference between the power spectrum of the upstream oxygen sensor signal and one of the downstream oxygen sensor signal named ΔPower is effective index for detection of deteriorated catalyst under acceleration conditions.
Technical Paper

SOF Component of Lubricant Oil on Diesel PM in a High Boosted and Cooled EGR Engine

2007-04-16
2007-01-0123
The engine in the research is a single cylinder DI diesel using the emission reduction techniques such as high boost, high injection pressure and broad range and high quantity of exhaust gas recirculation (EGR). The study especially focuses on the reduction of particulate matter (PM) under the engine operating conditions. In the experiment the authors measured engine performance, exhaust gases and mass of PM by low sulfur fuel such as 3 ppm and low sulfur lubricant oil such as 0.26%. Then the PM components were divided into soluble organic fraction (SOF) and insoluble organic fraction (ISOF) and they were measured at each engine condition. The mass of SOF was measured from the fuel fraction and lubricant oil fraction by gas chromatography. Also each mass of soot fraction and sulfate fraction was measured as components of ISOF. The experiment was conducted at BMEP = 2.0 MPa as full load condition of the engine and changing EGR rate from 0% to 40 %.
Technical Paper

Spray and Combustion Characteristics of Reformulated Biodiesel with Mixing of Lower Boiling Point Fuel

2007-04-16
2007-01-0621
Authors propose the reformulation technique of physical properties of Biodiesel Fuel (BDF) by mixing lower boiling point fuels. In this study, waste cooking oil methyl ester (B100), which have been produced in Kyoto city, is used in behalf of BDF. N-Heptane (C7H16) and n-Dodecane (C12H26) are used as low and medium boiling point fuel. Mixed fuel of BDF with lower boiling point fuels have lighter quality as compared with neat BDF. This result is based on the chemical-thermo dynamical liquid-vapor equilibrium theory. This paper describes fundamental spray and combustion characteristics of mixed fuel of B100 with lower boiling point fuels as well as the reformulation technique. By mixing lower boiling point fuel, lighter quality fuels can be refined. Thus, mixed fuels have higher volatility and lower viscosity. Therefore, vaporization of mixed fuel spray is promoted and liquid phase penetration of mixed fuel shortens as compared with that of neat BDF.
Technical Paper

A Fundamental Study on Ignition Characteristics of Two-Component Fuel in a Diesel Spray

2006-10-16
2006-01-3383
The authors have explored the potential of fuel to control spray and its combustion processes in a diesel engine. Fuel has some potential for low emission and high thermal efficiency because its volatility and ignitability are one of the ultimate performing factors of the engines. In present study, the ignition process of mixed fuel spray was investigated in a constant volume combustion vessel and in a rapid compression and expansion machine, The ignition delay based on the diagram of rate of the heat release, the imaging of natural flame emissions and the numerical simulation were carried out to clarify the effect of the physical and chemical properties of mixed fuel on ignition characteristics.
Technical Paper

Achievement of Medium Engine Speed and Load Premixed Diesel Combustion with Variable Valve Timing

2006-04-03
2006-01-0203
A variable valve timing (VVT) mechanism was applied to achieve premixed diesel combustion at higher load for low emissions and high thermal efficiency in a light duty diesel engine. By means of late intake valve closing (LIVC), compressed gas temperatures near the top dead center are lowered, thereby preventing too early ignition and increasing ignition delay to enhance fuel-air mixing. The variability of effective compression ratio has significant potential for ignition timing control of conventional diesel fuel mixtures. At the same time, the expansion ratio is kept constant to ensure thermal efficiency. Combining the control of LIVC, EGR, supercharging systems and high-pressure fuel injection equipment can simultaneously reduce NOx and smoke. The NOx and smoke suppression mechanism in the premixed diesel combustion was analyzed using the 3D-CFD code combined with detailed chemistry.
Technical Paper

Emission Characteristics of a Urea SCR System under Catalysts Activated and De-Activated Conditions

2006-04-03
2006-01-0639
Urea SCR (Selective Catalytic Reduction) system has high potential of reducing NOx. But such as system durability and safety under deteriorated catalysts conditions have not been well enough clarified because it is new technology for vehicles. In this paper, current NOx emission level of an engine equipped with urea SCR system is discussed and then exhaust emission characteristics were analyzed when the SCR catalyst and/or oxidation catalyst lose their functions. When both SCR and oxidation catalyst were de-activated, not only NOx but also PM increased remarkably, which were much more than the engine-out emissions. Oxidation catalyst downstream of SCR catalyst was effective to suppress such deteriorations.
Technical Paper

Development of NOx Storage Reduction System for a Heavy-Duty Dimethyl Ether Engine

2005-04-11
2005-01-1088
To establish NOx Storage Reduction(NSR) system, the effect of post fuel injection in exhaust pipe with rich spike on NOx conversion rate was investigated. With post fuel injection, a higher injection pressure and the rich spike close to the NSR catalyst (just before the NSR catalyst) shows better NOx reduction performance. Based on these results, exhaust emission was tested in transient driving mode (JE-05). In this driving mode test, it was possible to reduce NOx emission less than 0.5 g/kWh for only a 1% of fuel penalty controlling the rich spike injection precisely.
X