Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Failure Prediction and Design Optimization of Exhaust Manifold based on CFD and FEM Analysis

2020-04-14
2020-01-1166
A thermo-mechanical fatigue analysis was conducted based on a coupled Finite Element Analysis (FEA) - Computational Fluid Dynamics (CFD) method on the crack failure of the exhaust manifold for an inline 4-cylinder turbo-charged diesel engine under the durability test. In the this analysis, the temperature-dependent material properties were obtained from measurements and the model was calibrated with comparison of the predicted exhaust manifold temperatures with the on-engine measurements under the same engine load condition. Temperature and stress/strain distributions in the exhaust manifold were predicted with the calibrated model. Analysis results showed that the cracks took place at locations with high plastic deformations, suggesting that the cause of the failure be thermo-mechanical fatigue (TMF). Using the equivalent plastic strain (PEEQ) as the indicator for thermal mechanical fatigue, three exhaust manifold design revisions were carried out by CAE analysis.
Technical Paper

Reducing Temperature Gradients in High-Power, Large-Capacity Lithium-Ion Cells through Ultra-High Thermal Conductivity Heat Spreaders Embedded in Cooling Plates for Battery Systems with Indirect Liquid Cooling

2013-04-08
2013-01-0234
For lithium-ion battery systems assembled with high-capacity, high-power pouch cells, the cells are commonly cooled with thin aluminum cooling plates in contact with the cells. The cooling plates extract the cell heat and dissipate it to a cooling medium (air or liquid). During the pack utilizations with high-pulse currents, large temperature gradients along the cell surfaces can be encountered as a result of non-uniform distributions of the ohmic heat generated in the cells. The non-uniform cell temperature distributions can be significant for large-size cells. Maximum cell temperatures typically occur near the cell terminal tabs as a result of the ohmic heat of the terminal tabs and connecting busbars and the high local current densities. In this study, a new cooling plate is proposed for improving the uniformity in temperature distributions for the cells with large capacities.
Technical Paper

Characterizing Thermal Behavior of an Air-Cooled Lithium-Ion Battery System for Hybrid Electrical Vehicle Applications Using Finite Element Analysis Approach

2013-04-08
2013-01-1520
Thermal behavior of a Lithium-ion (Li-ion) battery module under a user-defined cycle corresponding to hybrid electrical vehicle (HEV) applications is analyzed. The module is stacked with 12 high-power 8Ah pouch Li-ion battery cells connected in series electrically. The cells are cooled indirectly with air through aluminum cooling plate sandwiched between each pair of cells. The cooling plate has extended cooling surfaces exposed in the cooling air flow channel. Thermal behavior of the battery system under a user specified electrical-load cycle for the target hybrid vehicle is characterized with the equivalent continuous load profile using a 3D finite element analysis (FEA) model for battery cooling. Analysis results are compared with measurements. Good agreement is observed between the simulated and measured cell temperatures. Improvement of the cooling system design is also studied with assistance of the battery cooling analyses.
Journal Article

Characterizing Thermal Runaway of Lithium-ion Cells in a Battery System Using Finite Element Analysis Approach

2013-04-08
2013-01-1534
In this study, thermal runaway of a 3-cell Li-ion battery module is analyzed using a 3D finite-element-analysis (FEA) method. The module is stacked with three 70Ah lithium-nickel-manganese-cobalt (NMC) pouch cells and indirectly cooled with a liquid-cooled cold plate. Thermal runaway of the module is assumed to be triggered by the instantaneous increase of the middle cell temperature due to an abusive condition. The self-heating rate for the runaway cell is modeled on the basis of Accelerating Rate Calorimetry (ARC) test data. Thermal runaway of the battery module is simulated with and without cooling from the cold plate; with the latter representing a failed cooling system. Simulation results reveal that a minimum of 165°C for the middle cell is needed to trigger thermal runaway of the 3-cell module for cases with and without cold plate cooling.
Journal Article

Design of Direct and Indirect Liquid Cooling Systems for High- Capacity, High-Power Lithium-Ion Battery Packs

2012-09-24
2012-01-2017
Battery packs for plug-in hybrid electrical vehicle (PHEV) applications can be characterized as high-capacity and high-power packs. For PHEV battery packs, their power and electrical-energy capacities are determined by the range of the electrical-energy-driven operation and the required vehicle drive power. PHEV packs often employ high-power lithium-ion (Li-ion) pouch cells with large cell capacity in order to achieve high packing efficiency. Lithium-ion battery packs for PHEV applications generally have a 96SnP configuration, where S is for cells in series, P is for cells in parallel, and n = 1, 2 or 3. Two PHEV battery packs with 355V nominal voltage and 25-kWh nominal energy capacity are studied. The first pack is assembled with 96 70Ah high-power Li-ion pouch cells in 96S1P configuration. The second pack is assembled with 192 35Ah high-power Li-ion pouch cells in 96S2P configuration.
Journal Article

Thermal Analysis of a Li-ion Battery System with Indirect Liquid Cooling Using Finite Element Analysis Approach

2012-04-16
2012-01-0331
The performance and life of Li-ion battery packs for electric vehicle (EV), hybrid electrical vehicle (HEV), and plug-in hybrid electrical vehicle (PHEV) applications are influenced significantly by battery operation temperatures. Thermal management of a battery pack is one of the main factors to be considered in the pack design, especially for those with indirect air or indirect liquid cooling since the cooling medium is not in contact with the battery cells. In this paper, thermal behavior of Li-ion pouch cells in a battery system for PHEV applications is studied. The battery system is cooled indirectly with liquid through aluminum cooling fins in contact with each cell and a liquid cooled cold plate for each module in the battery pack. The aluminum cooling fins function as a thermal bridge between the cells and the cold plate. Cell temperature distributions are simulated using a finite element analysis approach under cell utilizations corresponding to PHEV applications.
Journal Article

Thermal Analysis of a High-Power Lithium-Ion Battery System with Indirect Air Cooling

2012-04-16
2012-01-0333
Thermal behavior of a lithium-ion (Li-ion) battery module for hybrid electrical vehicle (HEV) applications is analyzed in this study. The module is stacked with 12 high-power pouch Li-ion battery cells. The cells are cooled indirectly with air through aluminum fins sandwiched between each two cells in the module, and each of the cooling fins has an extended cooling surface exposed in the cooling air flow channel. The cell temperatures are analyzed using a quasi-dimensional model under both the transient module load in a user-defined cycle for the battery system utilizations and an equivalent continuous load in the cycle. The cell thermal behavior is evaluated with the volume averaged cell temperature and the cell heat transfer is characterized with resistances for all thermal links in the heat transfer path from the cell to the cooling air. Simulations results are compared with measurements. Good agreement is observed between the simulated and measured cell temperatures.
Technical Paper

Influence of Terminal Tabs/Busbar Ohmic Heat on Maximum Cell Temperature of a Li-ion Battery System for PHEV Applications

2012-04-16
2012-01-0119
The battery packs for plug-in hybrid electrical vehicle (PHEV) applications are relatively small in the charge depleting (CD) mode but fairly large in the charge sustaining (CS) mode for their duties in comparison to the battery packs for hybrid electrical vehicle (HEV) applications. Thus, the heaviest battery thermal load for a PHEV pack is encountered at the end of the CD mode. Because the cells in PHEV battery packs are generally larger than those in the HEV packs in both capacity and size, control of the maximum cell temperature and the maximum differential cell temperature for the cells in a PHEV pack with high packing efficiency is a challenge for the cooling system design. The maximum cell temperatures locate in the areas near the terminal tabs where the current densities are highest.
Journal Article

Thermal Characterization of a Li-ion Battery Module Cooled through Aluminum Heat-Sink Plates

2011-09-13
2011-01-2248
The temperature distribution is studied theoretically in a battery module stacked with 12 high-power Li-ion pouch cells. The module is cooled indirectly with ambient air through aluminum heat-sink plates or cooling plates sandwiched between each pair of cells in the module. Each of the cooling plates has an extended cooling fin exposed in the cooling air channel. The cell temperatures can be controlled by changing the air temperature and/or the heat transfer coefficient on the cooling fin surfaces by regulating the air flow rate. It is found that due to the high thermal conductivity and thermal diffusivity of the cooling plates, heat transfer of the cooling plate governs the cell temperature distribution by spreading the cell heat over the entire cell surface. Influence of thermal from the cooling fins is also simulated.
Journal Article

An Analysis of a Lithium-ion Battery System with Indirect Air Cooling and Warm-Up

2011-09-13
2011-01-2249
Ideal operation temperatures for Li-ion batteries fall in a narrow range from 20°C to 40°C. If the cell operation temperatures are too high, active materials in the cells may become thermally unstable. If the temperatures are too low, the resistance to lithium-ion transport in the cells may become very high, limiting the electrochemical reactions. Good battery thermal management is crucial to both the battery performance and life. Characteristics of various battery thermal management systems are reviewed. Analyses show that the advantages of direct and indirect air cooling systems are their simplicity and capability of cooling the cells in a battery pack at ambient temperatures up to 40°C. However, the disadvantages are their poor control of the cell-to-cell differential temperatures in the pack and their capability to dissipate high cell generations.
Technical Paper

Comparative Study of Thermal Characteristics of Lithium-ion Batteries for Vehicle Applications

2011-04-12
2011-01-0668
Lithium ion batteries can be developed for vehicle applications from high power specification to high energy specification. Thermal response of a battery cell is the main factor to be considered for battery selection in the design of an electrified vehicle because some materials in the cells have low thermal stability and they may become thermally unstable when their working temperature becomes higher than the upper limit of allowed operating range. In this paper the thermal characteristics of different sizes and forms of commercially available batteries is investigated through electro-thermal analysis. The relation between cell capacity and cell internal resistance is also studied. The authors find that certain criteria can be defined for battery selection for electric vehicles, hybrid electric vehicles and plug-in hybrid electric vehicles. These criteria can be served as design guidelines for battery development for vehicle applications.
Journal Article

Electro-Thermal Modeling of a Lithium-ion Battery System

2010-10-25
2010-01-2204
Lithium-ion (Li-ion) batteries are becoming widely used high-energy sources and a replacement of the Nickel Metal Hydride batteries in electric vehicles (EV), hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (PHEV). Because of their light weight and high energy density, Li-ion cells can significantly reduce the weight and volume of the battery packs for EVs, HEVs and PHEVs. Some materials in the Li-ion cells have low thermal stabilities and they may become thermally unstable when their working temperature becomes higher than the upper limit of allowed operating temperature range. Thus, the cell working temperature has a significant impact on the life of Li-ion batteries. A proper control of the cell working temperature is crucial to the safety of the battery system and improving the battery life. This paper outlines an approach for the thermal analysis of Li-ion battery cells and modules.
X