Refine Your Search

Topic

Search Results

Technical Paper

Study of Near Nozzle Spray Characteristics of Ethanol under Different Saturation Ratios

2016-10-17
2016-01-2189
Atomization of fuel sprays is a key factor in controlling the combustion quality in the direct-injection engines. In this present work, the effect of saturation ratio (Rs) on the near nozzle spray patterns of ethanol was investigated using an ultra-high speed imaging technique. The Rs range covered both flash-boiling and non-flash boiling regions. Ethanol was injected from a single-hole injector into an optically accessible constant volume chamber at a fixed injection pressure of 40 MPa with different fuel temperatures and back pressures. High-speed imaging was performed using an ultrahigh speed camera (1 million fps) coupled with a long-distance microscope. Under non-flash boiling conditions, the effect of Rs on fuel development was small but observable. Clear fuel collision can be observed at Rs=1.5 and 1.0. Under the flash boiling conditions, near-nozzle spray patterns were significant different from the non-flash boiling ones.
Technical Paper

Numerical Investigation of GDI Injector Nozzle Geometry on Spray Characteristics

2015-09-01
2015-01-1906
The large eddy simulation (LES) with Volume of Fluid (VOF) interface tracking method in Ansys-FLUENT has been used to study the effects of nozzle hole geometrical parameters on gasoline direct injection (GDI) fuel injectors, namely the effect of inner hole length/diameter (L/D) ratio and counter-bore diameters on near field spray characteristics. Using iso-octane as a model fuel at the fuel injection pressure of 200 bar, the results showed that the L/D ratio variation of the inner hole has a more significant influence on the spray characteristics than the counter-bore diameter variation. Reducing the L/D ratio effectively increases the mass flow rate, velocity, spray angle and reduces the droplet size and breakup length. The increased spray angle results in wall impingements inside the counter-bore cavity, particularly for L/D=1 which can potentially lead to increased deposit accumulation inside fuel injectors.
Journal Article

An Investigation into the Characteristics of DISI Injector Deposits Using Advanced Analytical Methods

2014-10-13
2014-01-2722
There is an increasing recognition of injector deposit (ID) formation in fuel injection equipment as direct injection spark ignition (DISI) engine technologies advance to meet increasingly stringent emission legislation and fuel economy requirements. While it is known that the phenomena of ID in DISI engines can be influenced by changes in fuel composition, including increasing usage of aliphatic alcohols and additive chemistries to enhance fuel performance, there is however still a great deal of uncertainty regarding the physical and chemical structure of these deposits, and the mechanisms of deposit formation. In this study, a mechanical cracking sample preparation technique was developed to assess the deposits across DISI injectors fuelled with gasoline and blends of 85% ethanol (E85).
Technical Paper

The Comparative Study of Gasoline and n-butanol on Spray Characteristics

2014-10-13
2014-01-2754
n-butanol has been recognized as a promising alternative fuel for gasoline and may potentially overcome the drawbacks of methanol and ethanol, e.g. higher energy density. In this paper, the spray characteristics of gasoline and n-butanol have been investigated using a high pressure direct injection injector. High speed imaging and Phase Doppler Particle Analyzer (PDPA) techniques were used to study the spray penetration and the droplet atomization process. The tests were carried out in a high pressure constant volume vessel over a range of injection pressure from 60 to 150 bar and ambient pressure from 1 to 5 bar. The results show that gasoline has a longer penetration length than that of n-butanol in most test conditions due to the relatively small density and viscosity of gasoline; n-butanol has larger SMD due to its higher viscosity. The increase in ambient pressure leads to the reduction in SMD by 42% for gasoline and by 37% for n-butanol.
Technical Paper

Effects of Biodiesel Feedstock on the Emissions from a Modern Light Duty Engine

2014-04-01
2014-01-1394
Biodiesel is an oxygenated alternative fuel made from vegetable oils and animal fats via transesterification and the feedstock of biodiesel is diverse and varies between the local agriculture and market scenarios. Use of various feedstock for biodiesel production result in variations in the fuel properties of biodiesel. In this study, biodiesels produced from a variety of real world feedstock was examined to assess the performance and emissions in a light-duty engine. The objective was to understand the impact of biodiesel properties on engine performances and emissions. A group of six biodiesels produced from the most common feedstock blended with zero-sulphur diesel in 10%, 30% and 60% by volume are selected for the study. All the biodiesel blends were tested on a light-duty, twin-turbocharged common rail V6 engine. Their gaseous emissions (NOx, THC, CO and CO2) and smoke number were measured for the study.
Technical Paper

Experimental Study of Effect of Nozzle Diameter on Near-Field Spray Behavior of Diesel Sprays in Non-Evaporating Conditions

2014-04-01
2014-01-1405
The near-field diesel spray process in diesel engines is the intermediate one that connects the in-nozzle flow with far field spray process and high-speed imaging techniques with high-quality temporal and spatial resolution are required in order to record this short process (< 300 μs). In this study, a high-speed charge-coupled-device (CCD) camera with the speed of up to 1,000,000 fps was used to study the near-field spray process for a diesel injector with different nozzle diameters. The tests were carried out in a constant volume vessel over a range of injection pressure and ambient pressure in non-evaporating conditions. The observed zone of the spray was where penetration length is less than 18 mm. The development of spray penetration length against time after start of injection (ASOI) was used to evaluate the spray process. The significant difference on spray penetration length development is found when the nozzle diameter varied.
Technical Paper

Investigation on the Spray Characteristics of DMF- Isooctane Blends using PDPA

2014-04-01
2014-01-1408
Little research has been done on spray characteristics of 2,5-dimethylfuran (DMF), since the breakthrough in its production method as an alternative fuel candidate. In this paper, the spray characteristics of pure fuels (DMF, Isooctane) and DMF-Isooctane blends under different ambient pressures (1 bar, 3 bar and 7 bar) and injection pressures (50 bar, 100 bar and 150 bar) were studied using Phase Doppler Particle Analyzer (PDPA) and high speed imaging. Droplet velocity, size distribution, spray angle and penetration of sprays were examined. Based on the results, DMF had larger SMD and penetration length than isooctane. The surface tension of fuel strongly influenced spray characteristics. Increasing the surface tension by 26 % resulted in 12 % increase in SMD. Higher ambient pressure increased the drag force, but SMD was not influenced by the increased drag force. However, the increased ambient pressure reduced the injection velocity and We number resulting in higher SMD.
Journal Article

Transient Emissions Characteristics of a Turbocharged Engine Fuelled by Biodiesel Blends

2013-04-08
2013-01-1302
The effects of different biodiesel blends on engine-out emissions under various transient conditions were investigated in this study using fast response diagnostic equipment. The experimental work was conducted on a modern 3.0 L, V6 high pressure common rail diesel engine fuelled with mineral diesel (B0) and three different blends of rapeseed methyl esters (RME) (B30, B60, B100 by volume) without any modifications of engine parameters. DMS500, Fast FID and Fast CLD were used to measure particulate matter (PM), total hydrocarbon (THC) and nitrogen monoxide (NO) respectively. The tests were conducted during a 12 seconds period with two tests in which load and speed were changed simultaneously and one test with only load changing. The results show that as biodiesel blend ratio increased, total particle number (PN) and THC were decreased whereas NO was increased for all the three transient conditions.
Technical Paper

Phenomenology of EGR in a Light Duty Diesel Engine Fuelled with Hydrogenated Vegetable Oil (HVO), Used Vegetable Oil Methyl Ester (UVOME) and Their Blends

2013-04-08
2013-01-1688
HVO contains paraffin only and UVOME is methyl ester with long chain alkyl while mineral diesel is complex compound and contains lots of aromatic and Naphthenic. This paper compares the effects of EGR on the two different types of biodiesels blends compared to diesel. The combustion performance and emissions of biodiesel blends of UVOME and HVO were investigated in a turbocharged direct injection V6 diesel engine with EGR swept from 0% to the calibration setting for diesel. The EGR sweep tests with increment of 5% were conducted at the engine speed of 1500 RPM for the load of between 72 Nm to 143 Nm, using sulfur-free diesel blended with UVOME and HVO at 30% and 60% by volume respectively. As the EGR rate was increased, the brake specific fuel consumption (BSFC) for each fuel was reduced at lower load but increased at higher load. The BSFC of mineral diesel was lower than UVOME blends and similar to the HVO blends.
Technical Paper

Numerical Study of DMF and Gasoline Spray and Mixture Preparation in a GDI Engine

2013-04-08
2013-01-1592
2, 5-Dimethylfuran (DMF) has been receiving increasing interest as a potential alternative fuel to fossil fuels, owing to the recent development of new production technology. However, the influence of DMF properties on the in-cylinder fuel spray and its evaporation, subsequent combustion processes as well as emission formation in current gasoline direct injection (GDI) engines is still not well understood, due to the lack of comprehensive understanding of its physical and chemical characteristics. To better understand the spray characteristics of DMF and its application to the IC engine, the fuel sprays of DMF and gasoline were investigated by experimental and computational methods. The shadowgraph and Phase Doppler Particle Analyzer (PDPA) techniques were used for measuring spray penetration, droplet velocity and size distribution of both fuels.
Technical Paper

In-Cylinder Optical Study on Combustion of DMF and DMF Fuel Blends

2012-04-16
2012-01-1235
The bio-fuel, 2,5 - dimethylfuran (DMF) is currently regarded as a potential alternative fuel to gasoline due to the development of new production technology. However, little is known about the flame behavior in an optical engine. In this paper, high speed imaging (with intensifier) was used during the combustion of DMF and its blends with gasoline and ethanol (D50, D85, E50D50 and E85D15) in an SI optical engine. The flame images from the combustion of each fuel were analyzed at two engine loads: 3bar and 4bar IMEP. For DMF, D50 and E50D50, two modes were compared: DI and PFI. The average flame shapes (in 2D) and the average flame speeds were calculated and combined with mass fraction burned (MFB) data. The results show that when using DMF, the rate of flame growth development and flame speed is higher than when using gasoline. The differences in flame speed between DMF and gasoline is about 10% to 14% at low IMEP.
Technical Paper

Split-Injection Strategies under Full-Load Using DMF, A New Biofuel Candidate, Compared to Ethanol in a GDI Engine

2012-04-16
2012-01-0403
It is well known that direct injection (DI) is a technology enabler for stratified combustion in spark-ignition (SI) engines. At full load or wide-open throttle (WOT), partial charge stratification can suppress knock, enabling greater spark advance and increased torque. Such split-injection or double-pulse injection strategies are employed when using gasoline in DI (GDI). However, as the use of biofuels is set to increase, is this mode still beneficial? In the current study, the authors attempt to answer this question using two gasoline-alternative biofuels: firstly, ethanol; the widely used gasoline-alternative biofuel and secondly, 2,5-dimethylfuran (DMF); the new biofuel candidate. These results have been benchmarked against gasoline in a single-cylinder, spray-guided DISI research engine at WOT (λ = 1 and 1500 rpm). Firstly, single-pulse start of injection (SOI) timing sweeps were conducted with each fuel to find the highest volumetric efficiency and IMEP.
Journal Article

Dual-Injection as a Knock Mitigation Strategy Using Pure Ethanol and Methanol

2012-04-16
2012-01-1152
For spark ignition (SI) engines, the optimum spark timing is crucial for maximum efficiency. However, as the spark timing is advanced, so the propensity to knock increases, thus compromising efficiency. One method to suppress knock is to use high octane fuel additives. However, the blend ratio of these additives cannot be varied on demand. Therefore, with the advent of aggressive downsizing, new knock mitigation techniques are required. Fortuitously, there are two well-known lower alcohols which exhibit attractive knock mitigation properties: ethanol and methanol. Both not only have high octane ratings, but also result in greater charge-cooling than with gasoline. In the current work, the authors have exploited these attractive properties with the dual-injection, or the dual-fuel concept (gasoline in PFI and fuel additive in DI) using pure ethanol and methanol.
Journal Article

Effects of Combustion Phasing, Injection Timing, Relative Air-Fuel Ratio and Variable Valve Timing on SI Engine Performance and Emissions using 2,5-Dimethylfuran

2012-04-16
2012-01-1285
Ethanol has long been regarded as the optimal gasoline-alternative biofuel for spark-ignition (SI) engines. It is used widely in Latin and North America and is increasingly accepted as an attractive option across Europe. Nevertheless, its low energy density requires a high rate of manufacture; in areas which are deficient of arable land, such rates might prove problematic. Therefore, fuels with higher calorific values, such as butanol or 2,5-dimethylfuran (DMF) deserve consideration; a similar yield to ethanol, in theory, would require much less land. This report addresses the suitability of DMF, to meet the needs as a biofuel substitute for gasoline in SI engines, using ethanol as the biofuel benchmark. Specific attention is given to the sensitivity of DMF to various engine control parameters: combustion phasing (ignition timing), injection timing, relative air-fuel ratio and valve timing (intake and exhaust).
Technical Paper

Comparative Experimental Study on Microscopic Spray Characteristics of RME, GTL and Diesel

2010-10-25
2010-01-2284
In this paper, the microscopic spray characteristics of diesel, Rapeseed Methyl Ester (RME) and Gas-to-Liquid (GTL) fuel, were studied at different injection pressures and measuring positions using Phase Doppler Anemometry (PDA) technique and the velocity development and size distributions of the fuel droplets were analysed in order to understand spray atomisation process. The injection pressures ranged from 80MPa to 150MPa, and the measuring position varied from 20mm to 70mm downstream the nozzle. It was found that the data rate is quite low in the near nozzle region and at high injection pressure. Sauter Mean Diameter (SMD) of all fuels obviously decreases when the injection pressure increases from 80MPa to 120MPa; but the injection pressure has little promotion on the axial velocity of droplets.
Journal Article

Spray Characteristics Study of DMF Using Phase Doppler Particle Analyzer

2010-05-05
2010-01-1505
2,5-dimethylfuran (DMF) is currently regarded as a potential alternative fuel to gasoline due to the development of new production technology. In this paper, the spray characteristics of DMF and its blends with gasoline were studied from a high pressure direct injection gasoline injector using the shadowgraph and Phase Doppler Particle Analyzer (PDPA) techniques, This includes the spray penetration, droplet velocity and size distribution of the various mixtures. In parallel commercial gasoline and ethanol were measured in order to compare the characteristics of DMF. A total of 52 points were measured along the spray so that the experimental results could be used for subsequent numerical modeling. In summary, the experimental results showed that DMF and its blends have similar spray properties to gasoline, compared to ethanol. The droplet size of DMF is generally smaller than ethanol and decreases faster with the increase of injection pressure.
Journal Article

The Particle Emissions Characteristics of a Light Duty Diesel Engine with 10% Alternative Fuel Blends

2010-05-05
2010-01-1556
In this study, the particle emission characteristics of 10% alternative diesel fuel blends (Rapeseed Methyl Ester and Gas-to-Liquid) were investigated through the tests carried out on a light duty common-rail Euro 4 diesel engine. Under steady engine conditions, the study focused on particle number concentration and size distribution, to comply with the particle metrics of the European Emission Regulations (Regulation NO 715/2007, amended by 692/2008 and 595/2009). The non-volatile particle characteristics during the engine warming up were also investigated. They indicated that without any modification to the engine, adding selected alternative fuels, even at a low percentage, can result in a noticeable reduction of the total particle numbers; however, the number of nucleation mode particles can increase in certain cases.
Technical Paper

A 1D Analysis into the Effect of Variable Valve Timing on HCCI Engine Parameters

2008-10-06
2008-01-2459
The effects of variable intake-valve-timing on the gas exchange process and performance of a 4-valve direct-injection HCCI engine were computationally investigated using a 1D gas dynamics engine cycle simulation code. A non-typical strategy to actuate the pair of intake valves was examined; whereby each valve was assumed to be actuated independently at different timing. Using such an intake valves strategy, the obtained results showed a considerable improvement of the engine parameters such as load and charging efficiency as compared with the typical identical intake valve pair timings case. Additional benefits of minimizing pumping losses and improving the fuel economy were demonstrated with the use of the non-simultaneous actuation of the intake valve pair having the opening timing of the early intake valve coupled with a symmetric degree of crank angle for the timing of exhaust valve closing.
Technical Paper

Effect of Intake Valves Timings on In-Cylinder Charge Characteristics in a DI Engine Cylinder with Negative Valve Overlapping

2008-04-14
2008-01-1347
This paper presents a computational investigation of the in-cylinder charge characteristics within a motored 4-valve direct injection HCCI engine cylinder with applied negative valve overlapping. Non-typical intake valve strategy was investigated; whereby the pair of intake valves was assumed to follow the same low-lift short-duration valve-lift profile but actuated at different timings. The phase of intake-valve-opening relative to that of exhaust-valve-closing was optimized in terms of pumping losses. The flow fields generated with such an intake valve strategy were compared to those produced in the same engine cylinder but with typical early and late intake-valve-timing. The computational results of such an approach showed modifications in the in-cylinder swirl and tumble motions during the intake and compression strokes.
Technical Paper

A CFD Investigation into the Effects of Intake Valves Events on Airflow Characteristics in a Motored 4-Valve Engine Cylinder with Negative Valve Overlapping

2007-09-16
2007-24-0032
This paper presents a computational study of the airflow features within a motored 4-valve direct injection engine cylinder. An unconventional intake valve strategy was investigated; whereby each valve on the pair of intake valves was assumed to be actuated with different lifts and duration. One of the intake valves was assumed to follow a high-lift long duration valve-lift profile while the other was assumed to follow a low-lift short duration valve-lift profile. The pair of exhaust valves was assumed to be actuated with two identical low-lift short duration valve-lift profiles in order to generate the so-called negative valve overlapping (NVO). The in-cylinder flow fields developed with such intake valve strategy were compared to those produced in the same engine cylinder but with the application of identical low-lift short duration intake valve events.
X