Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Combustion and Emissions Performance of Simulated Syngas/Diesel Dual Fuels in a CI Engine

2022-08-30
2022-01-1051
Small diesel engines are a common primer for micro and mini-grid systems, which can supply affordable electricity to rural and remote areas, especially in developing countries. These diesel generators have no exhaust after-treatment system thus exhaust emissions are high. This paper investigates the potential of introducing simulated synthetic gas (syngas) to diesel in a small diesel engine to explore the opportunities of widening fuel choices and reducing emissions using a 5.7kW single cylinder direct injection diesel generator engine. Three different simulated syngas blends (with varying hydrogen content) were prepared to represent the typical syngas compositions produced from downdraft gasification and were injected into the air inlet. In-cylinder pressure, ignition delay, premixed combustion, combustion stability, specific energy consumption (SEC), and gaseous and particle emissions were measured at various power settings and mixing ratios.
Technical Paper

An Improved Heat Release Rate (HRR) Model for the Analysis of Combustion Behaviour of Diesel, GTL, and HVO Diesel

2020-09-15
2020-01-2060
Heat Release Rate (HRR) analysis is indispensable in engine research. The HRR of Internal Combustion Engines (ICEs) is most sensitive to gamma (γ). The proposed HRR models in literature were largely based on γ expressed as functions of temperature. However, γ is depended on temperature as well as the excess air ratio (λ). In this work, an improved HRR model based on γ(T, λ) was used to investigate the combustion behaviour of standard diesel, Gas-to-Liquid (GTL) diesel and Hydrotreated Vegetable Oil (HVO) diesel in a 96 kW, multiple fuel injection, Euro V, Direct Injection (DI) engine. The improved HRR model (Leeds HRR model) was validated for the alternative fuels by comparing the fuel masses predicted by the model to the measured fuel masses. The fuel masses predicted by the Leeds HRR model were also compared to the predictions from four HRR models that were based on γ(T).
Technical Paper

Emissions from a HGV Using Used Cooking Oil as a Fuel under Real World Driving Conditions

2015-04-14
2015-01-0905
To maximize CO2 reduction, refined straight used cooking oils were used as a fuel in Heavy Goods Vehicles (HGVs) in this research. The fuel is called C2G Ultra Biofuel (C2G: Convert to Green Ltd) and is a fully renewable fuel made as a diesel replacement from processed used cooking oil, used directly in diesel engines specifically modified for this purpose. This is part of a large demonstration project involving ten 44-tonne trucks using C2G Ultra Biofuel as a fuel to partially replace standard diesel fuels. A dual fuel tank containing both diesel and C2G Ultra Biofuel and an on-board fuel blending system-Bioltec system was installed on each vehicle, which is able to heat the C2G Ultra Biofuel and automatically determine the required blending ratio of diesel and C2G Ultra Biofuel according to fuel temperature and engine load. The engine was started with diesel and then switched to C2G Ultra Biofuel under appropriate conditions.
Technical Paper

Fuel Consumption and GHG Reductions by using Used Cooking Oil as a Fuel in a HGV under Real World Driving Conditions

2014-10-13
2014-01-2727
Direct use of straight vegetable oil based biofuels in diesel engines without trans-esterification can deliver more carbon reductions compared to its counterpart biodiesel. However, the use of high blends of straight vegetable oils especially used cooking oil based fuels in diesel engines needs to ensure compatible fuel economy with PD (Petroleum Diesel) and satisfactory operational performance. There are two ways to use high blends of SVO (Straight Vegetable Oil) in diesel engines: fixed blending ratio feeding to the engine and variable blending ratio feeding to the engine. This paper employed the latter using an on-board blending system-Bioltec system, which is capable of heating the vegetable oils and feeding the engine with neat PD or different blends of vegetable oils depending on engine load and temperature.
Journal Article

Determination of Carbon Footprint using LCA Method for Straight Used Cooking Oil as a Fuel in HGVs

2014-04-01
2014-01-1948
In order to improve energy supply diversity and reduce carbon dioxide emissions, sustainable bio-fuels are strongly supported by EU and other governments in the world. While the feedstock of biofuels has caused a debate on the issue of sustainability, the used cooking oil (UCO) has become a preferred feedstock for biodiesel manufacturers. However, intensive energy consumption in the trans-esterification process during the UCO biodiesel production has significantly compromised the carbon reduction potentials and increased the cost of the UCO biodiesel. Moreover, the yield of biodiesel is only ∼90% and the remaining ∼10% feedstock is wasted as by-product glycerol. Direct use of UCO in diesel engines is a way to maximize its carbon saving potentials.
Technical Paper

Rape Seed Oil B100 Diesel Engine Particulate Emissions: The Influence of Intake Oxygen on Particle Size Distribution

2012-04-16
2012-01-0435
Pure rape seed oil (RSO), as coded BO100 (BO: Bio-Oil) to distinguish from biodiesel was investigated for a range of intake oxygen levels from 21 to 24%. RSO can have deposit problems in both the fuel injector and piston crown and elevated intake oxygen levels potentially could control these by promoting their oxidation. Increased intake oxygen elevates the peak temperature and this promotes the oxidation of soot and volatile organic compounds. The effect of this on particle mass and on the particle size distribution was investigated using a 6-cylinder 6-liter Perkins Phaser Euro 2 DI diesel engine. The tests were conducted at 47 kW brake power output at 1500 rpm. The particle size distribution was determined from the engine-out exhaust sample using a Dekati microdilution system and nano-SMPS analyzer. The results showed that for air RSO had higher particle mass than diesel and that this mass decreased as the oxygen level was increased.
Journal Article

Effect of Multifunctional Fuel Additive Package on Fuel Injector Deposit, Combustion and Emissions using Pure Rape Seed Oil for a DI Diesel

2009-11-02
2009-01-2642
This work investigates the effect of a multifunctional diesel fuel additive package used with RapeSeed Oil (RSO) as a fuel in a DI heavy duty diesel engine. The effects on fuel injectors’ cleanliness were assessed. The aim was to maintain combustion performance and preventing the deterioration of exhaust emissions associated with injector deposit build up. Two scenarios were investigated: the effect of deposit clean-up by a high dose of the additive package; and the effect of deposit prevention using a moderate dose of the additive package. Engine combustion performance and emissions were compared for each case against use of RSO without any additive. The engine used was a 6 cylinder, turbocharged, intercooled Perkins Phaser Engine, fitted with an oxidation catalyst and meeting the Euro II emissions limits. The tests were conducted under steady state conditions of 23kW and 47kW power output at an engine speed of 1500 rpm.
Technical Paper

Investigation of Aldehyde and VOC Emissions during Cold Start and Hot Engine Operations using 100% Biofuels for a DI Engine

2009-04-20
2009-01-1515
Aldehydes and other Volatile Organic compounds (VOC) are assessed under cold start and steady state conditions using a Perkins Phaser 6 litre diesel engine. A comparison is made between petroleum diesel fuel (PD), 100% biodiesel (WME) and 100% rapeseed oil (RSO). A Temet FTIR was used to determine aldehydes including formaldehyde, acetaldehyde and acrolein. The diesel engine was cold started at room temperature using a step start up procedure that kept the power output constant at two steady state conditions: 23kW and 47kW. Very little difference was observed between petroleum diesel and biodiesel aldehyde emissions at either steady state conditions or during cold start. There was, however, an increase in aldehydes at steady state for rapeseed oil, particularly at low load, but only for from ∼10ppm to 25 ppm for formaldehyde (i.e. 0.12g/kWh to 0.37g/kWh). During cold start conditions, the emissions were significantly higher for rapeseed oil than for petroleum diesel.
Technical Paper

The Influence of Fuel Pre-Heating on Combustion and Emissions with 100% Rapeseed Oil for a DI Diesel Engine

2009-04-20
2009-01-0486
This work investigates the heating of unprocessed rapeseed oil as a means to improve fuel delivery by reducing the fuel viscosity, and to assess the effects on combustion performance. The results show that a simple low power heater with thermal insulation around the fuel line and pump can effectively raise the operational fuel temperature at delivery to the pump. The results show that even with a moderate temperature increase, the fuel flow limitations with rapeseed oil are reduced and the legislated gaseous emissions are reduced at steady state conditions. As one of the main reasons for the conversion of straight oils to the methyl ester, ie biodiesel, is to reduce the viscosity, this work shows that heating the oil can have a similar effect. An emissions benefit is observed with biodiesel compared to rapeseed oil but this is not large. There is also a significant greenhouse gas and cost benefit associated with straight vegetable oils.
Technical Paper

Investigation of Regulated and Non-Regulated Cold Start Emissions using a EURO3 SI Car as a Probe Vehicle under Real World Urban Driving Conditions

2008-10-06
2008-01-2428
Regulated and non-regulated tailpipe exhaust emissions were measured under real world urban driving conditions using a set of in-vehicle FTIR emission measurement system, which is able to measure 65 emission components simultaneously at a rate of 0.5 Hz. A EURO3 emission compliant SI car was used as a probe vehicle. An urban driving cycle was used for the test and four repeated journeys were conducted. The results were compared to EU emissions legislation. The results show that the TWC needed approximately 200 seconds to reach full conversion efficiency. THC and NOx emissions exceeded the EURO 3 exhaust emission legislation. CO2 emissions were well above the type approval value of this type of the vehicle. Greenhouse gases (methane and nitrous oxide) and toxic hydrocarbons such as benzene were predominantly emitted during cold start period from 0 to 200 seconds of the engine start. The results had a reasonable repeatability for most of the emissions.
Technical Paper

Comparison of Particulate PAH Emissions for Diesel, Biodiesel and Cooking Oil using a Heavy Duty DI Diesel Engine

2008-06-23
2008-01-1811
An investigation was conducted into particulate PAH emissions from a heavy duty DI diesel engine using; a typical diesel fuel, 100% methyl ester derived from waste cooking oils, and 100% rapeseed oil supplied as fresh cooking oil. This study quantifies the particulate PAH levels emitted at two steady state load conditions, with comparison of the oxidation catalyst efficiency for the main species identified. The engine used was a 6 cylinder, turbocharged, intercooled Perkins Phaser engine, with emission compliance of EURO 2. Particulate samples were also analysed for VOF and carbon content. Both biofuels resulted in reductions in the most abundant particulate PAH species, particularly at the lower load condition. Larger species such as Benzo(a)anthracene, chrysene, benzo(b)fluoranthene and benzo (k)fluoranthene were detectable for all fuels upstream of the catalyst but were oxidized to near or below detection limits downstream of the catalyst.
Technical Paper

Comparison of Exhaust Emissions and Particulate Size Distribution for Diesel, Biodiesel and Cooking Oil from a Heavy Duty DI Diesel Engine

2008-04-14
2008-01-0076
Rape oil, as used in fresh cooking oil (FCO), and the methyl ester derived from waste cooking oil (WCOB100) were tested as 100% biofuels (B100) on a heavy duty DI diesel engine under steady state conditions. The exhaust emissions were measured and compared to those for conventional low sulphur (<50ppm) diesel fuel. The engine used was a 6 cylinder, turbocharged, intercooled Perkins Euro2 Phaser Engine, fitted with an oxidation catalyst. The engine out gaseous emissions results for WCOB100 showed a large decrease in CO and HC emissions, but a small increase in NOx emissions compared to diesel. However, for FCO the CO and HC increased relative to WCOB100 and CO was higher than for diesel, indicating deterioration in fuel/air mixing. The particulate matter (PM) emissions for WCOB100 were similar to those for diesel at the 23kw condition, but greatly reduced at 47kw. The FCO produced higher engine out PM at both power conditions due to a higher volatile organic fraction (VOF).
Technical Paper

Study of Emission and Combustion Characteristics of RME B100 Biodiesel from a Heavy Duty DI Diesel Engine

2007-01-23
2007-01-0074
A rapeseed methyl ester biodiesel RMEB100 was tested on a heavy duty DI diesel engine under steady state conditions. The combustion performance and exhaust emissions were measured and compared to a standard petroleum derived diesel fuel. The engine used was a 6 cylinder, turbocharged, intercooled Perkins Phaser Engine, with emission compliance of EURO 2, fitted with an oxidation catalyst. The exhaust samples were taken both upstream and downstream of the catalyst. Particulates were collected and analysed for VOF, carbon and ash. A MEXA7100 gas analysis system was used for legislated gas analysis such as CO, CO2, NOx and total hydrocarbons. A FTIR analysis system was deployed for gaseous hydrocarbon speciation, which is capable of speciating up to 65 species. The results showed a significant reduction in total particulate mass, particulate VOF, CO, THC and aldehydes when using RMEB100.
Technical Paper

Condensable and Gaseous Hydrocarbon Emissions and Their Speciation for a Real World SI Car Test

2007-01-23
2007-01-0062
Condensable and gaseous hydrocarbon emissions and speciation of the hydrocarbons have been investigated using a EURO1 emissions compliant SI (Spark Ignition) car. Exhaust gas samples were simultaneously collected upstream and downstream of the catalyst using a system containing cold ice trap, resin, particulate filter block and Teflon gas sampling bag. GC (Gas Chromatography) was employed to analyze for hydrocarbons and 16 of the more significant hydrocarbons are reported. The test was carried out using both cold start and hot start driving cycles. Results show that the benzene and toluene were major species emitted from the tailpipe under cold start conditions. Methylnaphthalene was a dominated hydrocarbon under hot start conditions. The cold start had significant influence on hydrocarbon emissions. The catalyst out benzene emissions for cold start was thirty times higher than that for hot start.
X