Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Deviation-Based Centroid Displacement Method for Combustion Parameters Acquisition

2024-04-09
2024-01-2839
The absence of combustion information continues to be one of the key obstacles to the intelligent development of engines. Currently, the cost of integrating cylinder pressure sensors remains too high, prompting attention to methods for extracting combustion information from existing sensing data. Mean-value combustion models for engines are unable to capture changes of combustion parameters. Furthermore, the methods of reconstructing combustion information using sensor signals mainly depend on the working state of the sensors, and the reliability of reconstructed values is directly influenced by sensor malfunctions. Due to the concentration of operating conditions of hybrid vehicles, the reliability of priori calibration map has increased. Therefore, a combustion information reconstruction method based on priori calibration information and the fused feature deviations of existing sensing signals is proposed and named the "Deviation-based Centroid Displacement Method" (DCDM).
Technical Paper

Hydrogen Engine Insights: A Comprehensive Experimental Examination of Port Fuel Injection and Direct Injection

2024-04-09
2024-01-2611
The environmental and sustainable energy concerns in transport are being addressed through the decarbonisation path and the potential of hydrogen as a zero-carbon alternative fuel. Using hydrogen to replace fossil fuels in various internal combustion engines shows promise in enhancing efficiency and achieving carbon-neutral outcomes. This study presents an experimental investigation of hydrogen (H2) combustion and engine performance in a boosted spark ignition (SI) engine. The H2 engine incorporates both port fuel injection (PFI) and direct injection (DI) hydrogen fuel systems, capable of injecting hydrogen at pressures of up to 4000 kPa in the DI system and 1000 kPa in the PFI operations. This setup enables a direct comparison of the performance and emissions of the PFI and DI operations. The study involves varying the relative air-to-hydrogen ratio (λ) at different speeds to explore combustion and engine limits for categorising and optimising operational regions.
Technical Paper

Comparison of Conventional vs Reactivity-Controlled Compression Ignition Diesel-Hythane Dual-Fuel Combustion: An Investigation on Engine Performance and Emissions at Low-Load

2023-06-26
2023-01-1203
The exponential rise in greenhouse gas (GHG) emissions into the environment is one of the major concerns of international organisations and governments. As a result, lowering carbon dioxide (CO2) and methane (CH4) emissions has become a priority across a wide range of industries, including transportation sector, which is recognised as one of the major sources of these emissions. Therefore, renewable energy carriers and powertrain technologies, such as the use of alternative fuels and combustion modes in internal combustion engines, are required. Dual-fuel operation with high substitution ratios using low carbon and more sustainable fuels can be an effective short-term solution. Hythane, a blend of 20% hydrogen and 80% methane, could be a potential solution to this problem.
Technical Paper

Analysis of Combustion Cycle-to-Cycle Variation in an Optical Single Cylinder Dual-Fuel Engine

2023-04-11
2023-01-0279
This study aims to improve the dual fuel combustion for low/zero carbon fuels. Seven cases were tested in a single cylinder optical engine and their ignition and combustion characteristics are compared. The baseline case is the conventional diesel combustion. Four cases are diesel-gas (compressed natural gas) dual-fuel combustion operations, and two cases are diesel-hythane combustion. The diesel fuel injection process was visualized by a high-speed copper vapour laser. The combustion processes were recorded with a high-speed camera at 10000 Hz with an engine speed of 1200 rpm. The high-speed recordings for each case included 22 engine cycles and were postprocessed to create one spatial overlapped average combustion image. The average combustion cycle images were then further thresholded and these images were then used in a new method to analyze the cycle-to-cycle variation in a dimensionless, for all cases comparable value.
Technical Paper

Experimental Investigation of Combustion Characteristics, Performance, and Emissions of a Spark Ignition Engine with 2nd Generation Bio-Gasoline and Ethanol Fuels

2023-04-11
2023-01-0339
Climate change mitigation is the main challenge for the automotive industry, as the government issues legislation to combat CO2 emissions. In addition to electrification and battery electric vehicles, using low-carbon and zero-carbon fuels in Internal Combustion (IC) engines can also be an effective way to reach net zero-carbon transport. This study investigated and compared the combustion characteristics, performance and emissions of a highly boosted spark ignition (SI) engine fuelled with EU VI 95 RON E10 gasoline and blends of second-generation bio-gasoline with different ethanol contents of 5% (E5), 10% (E10), and 20% (E20). The single-cylinder SI engine was equipped with a centrally mounted high-pressure injector and supplied externally boosted air. Engine experiments were conducted at 2000 RPM and 3000 RPM with low and high load operations.
Technical Paper

Combustion Characteristics and Exhaust Emissions of a Direct Injection SI Engine with Pure Ethanol and Methanol in Comparison to Gasoline

2022-08-30
2022-01-1089
The automobile industry is under intense pressure to reduce carbon dioxide (CO2) emissions of vehicles. There is also increasing pressure to reduce the other tail-pipe emissions from vehicles to combat air pollution. Electric powertrains offer great potential for eliminating tailpipe CO2 and all other tailpipe emissions. However, current battery technology and recharging infrastructure still present limitations for some applications, where a continuous high-power demand is required. Furthermore, not all markets have the infrastructure to support a sizeable electric fleet and until the grid energy generation mix is of a sufficiently low carbon intensity, then significant vehicle life-cycle CO2 savings could not be realized by the Battery Electric Vehicles. This investigation examines the effects of combustion, efficiencies, and emissions of two alcohol fuels that could help to significantly reduce CO2 in both tailpipe and the whole life cycle.
Technical Paper

A Comparison Study on the Performance of the Multi-Stroke Cycle SI Engine under Low Load

2021-04-06
2021-01-0530
Pumping Mean Effective Pressure (PMEP) is the main factor limiting the improvement of thermal efficiency in a spark-ignition (SI) engine under low load. One of the ways to reduce the pumping loss under low load is to use Cylinder DeActivation (CDA). The CDA aims at reducing the firing density (FD) of the SI engine under low load operation and increasing the mass of air-fuel mixture within one cycle in one cylinder to reduce the throttling effect and further reducing the PMEP. The multi-stroke cycles can also reduce the firing density of the SI engine after some certain reasonable design, which is feasible to improve the thermal efficiency of the engine under low load in theory. The research was carried out on a calibrated four-cylinder SI engine simulation platform. The thermal efficiency improvements of the 6-stroke cycle and 8-stroke cycle to the engine performance were studied compared with the traditional 4-stroke cycle under low load conditions.
Technical Paper

Analysis of the Boost System for a High Performance 2-Stroke Boosted Uniflow Scavenged Direct Injection Gasoline (BUSDIG) Engine

2020-09-15
2020-01-2007
A 2-stroke boosted uniflow scavenged direct injection gasoline (BUSDIG) engine was researched and developed at Brunel University London to achieve higher power-to-mass ratio and thermal efficiency. In the BUSDIG engine concept, the intake scavenge ports are integrated to the cylinder liner and controlled by the movement of piston top while exhaust valves are placed in the cylinder head. Systematic studies on scavenging ports, intake plenum, piston design, valve opening profiles and fuel injection strategies have been performed to investigate and optimise the scavenging performance and in-cylinder fuel/air mixing process for optimised combustion process. In order to achieve superior power performance with higher thermal efficiency, the evaluation and optimisation of the boost system for a 1.0 L 2-cylinder 2-stroke BUSDIG engine were performed in this study using one dimensional (1D) engine simulations.
Technical Paper

Combustion Visualization and Experimental Study on Multi-Point Micro-Flame Ignited (MFI) Hybrid Lean-Burn Combustion in 4-Stroke Gasoline Engines

2020-09-15
2020-01-2070
Lean-burn combustion is an effective method for increasing the thermal efficiency of gasoline engines fueled with stoichiometric fuel-air mixture, but leads to an unacceptable level of high cyclic variability before reaching ultra-low nitrogen oxide (NOx) emissions emitted from conventional gasoline engines. Multi-point micro-flame ignited (MFI) hybrid combustion was proposed to overcome this problem, and can be can be grouped into double-peak type, ramp type and trapezoid type with very low frequency of appearance. This research investigates the micro-flame ignition stages of double-peak type and ramp type MFI combustion captured by high speed photography. The results show that large flame is formed by the fast propagation of multi-point flame occurring in the central zone of the cylinder in the double-peak type. However, the multiple flame sites occur around the cylinder, and then gradually propagate and form a large flame accelerated by the independent small flame in the ramp type.
Technical Paper

Effects of Direct Injection Timing and Air Dilution on the Combustion and Emissions Characteristics of Stratified Flame Ignited (SFI) Hybrid Combustion in a 4-Stroke PFI/DI Gasoline Engine

2020-04-14
2020-01-1139
Controlled Auto-Ignition (CAI) combustion can effectively improve the thermal efficiency of conventional spark ignition (SI) gasoline engines, due to shortened combustion processes caused by multi-point auto-ignition. However, its commercial application is limited by the difficulties in controlling ignition timing and violent heat release process at high loads. Stratified flame ignited (SFI) hybrid combustion, a concept in which rich mixture around spark plug is consumed by flame propagation after spark ignition and the unburned lean mixture closing to cylinder wall auto-ignites in the increasing in-cylinder temperature during flame propagation, was proposed to overcome these challenges.
Technical Paper

Numerical Investigation of Diesel-Spray-Orientated Piston Bowls on Natural Gas and Diesel Dual Fuel Combustion Engine

2020-04-14
2020-01-0311
Low combustion efficiency and high hydrocarbon emissions at low loads are key issues of natural gas and diesel (NG-diesel) dual fuel engines. For better engine performance, two diesel-spray-orientated (DSO) bowls were developed based on the existing diesel injector of a heavy-duty diesel engine with the purpose of placing more combustible natural gas/air mixture around the diesel spray jets. A protrusion-ring was designed at the rim of the piston bowl to enhance the in-cylinder flame propagation. Numerical simulations were conducted for a whole engine cycle at engine speed of 1200 r/min and indicated mean effective pressure (IMEP) of 0.6 MPa. Extended coherent flame model 3 zones (ECFM-3Z) combustion model with built-in soot emissions model was employed. Simulation results of the original piston bowl agreed well with the experimental data, including in-cylinder pressure and heat released rate (HRR), as well as soot and methane emissions.
Technical Paper

Effect of a Split-Injection Strategy on the Atomisation Rate Using a High Pressure Gasoline DI Injector

2020-04-14
2020-01-0322
The Gasoline direct-injection (GDI) engine can emit high levels of particulate matter and unburned Hydrocarbons when operating under stratified charge combustion mode. Injecting late in the compression stroke means the fuel has insufficient time to atomise and evaporate. This could cause fuel film accumulation on the piston surface and combustion liner. Locally fuel rich diffusion combustion could also result in the formation of soot particles. Employing a split-injection strategy can help tackle these issues. The first injection is initiated early in the intake stroke and could ensure a global homogeneous charge. The second injection during the compression stroke could help form a fuel-rich charge in the vicinity of the spark plug. Many studies have established the crucial role that a split-injection strategy plays in the stratified charge operation of GDI engines.
Technical Paper

The effective use of ethanol for greenhouse gas emissions reduction in a diesel engine

2020-01-13
2019-36-0157
Regulations have been established for the monitoring and reporting of greenhouse gas (GHG) emissions and fuel consumption from the transport sector. Low carbon fuels combined with new powertrain technologies have the potential to provide significant reductions in GHG emissions while decreasing the dependence on fossil fuel. In this study, a lean-burn ethanol-diesel dual-fuel combustion strategy has been used as means to improve upon the efficiency and emissions of a conventional diesel engine. Experiments have been performed on a 2.0 dm3 single cylinder heavy-duty engine equipped with port fuel injection of ethanol and a high-pressure common rail diesel injection system. Exhaust emissions and fuel consumption have been measured at a constant engine speed of 1200 rpm and various steady-state loads between 0.3 and 2.4 MPa net indicated mean effective pressure (IMEP).
Technical Paper

Effect of a split-injections strategy on the atomisation rate for charge stratification using a high pressure gasoline multi-hole injector

2019-12-19
2019-01-2248
Some of the challenges of optimising the gasoline direct-injection engines are achieving high rates of atomisation and evaporation of fuel sprays for effective fuel-air mixture formation. This is especially important for the stratified charge when operating under cold-start and part-load conditions. Poorly mixed charge results in the increased production of total Hydrocarbons and Nitrogen Oxides. Many studies have previously focused on improving the spray characteristics of a single fuel injection strategy from direct-injection gasoline injectors, with fuel rail pressures of up to 20MPa. The current study focuses on a split injections strategy and its influence on the spray's structure, fuel-air mixing and atomisation rates. Short pulse widths in the range of 0.3ms to 0.8ms are employed. In particular, the effects of dwell times between the two injections on the second injection's spray characteristics are evaluated.
Technical Paper

Study on Flame Characteristics under Conditions of Stratified Flame Ignition Hybrid Combustion

2019-12-19
2019-01-2316
In Spark Ignition (SI)-Controlled Auto Ignition (CAI) hybrid combustion, the in-cylinder temperature and total mass of dilution charge are usually increased compared to the traditional SI engine in order to achieve and control the auto-ignition combustion, which would in turn lead to the variations of the diluted flame propagation combustion. In this study, the optical measurements were performed to understand the flame characteristics at highly diluted conditions. The results showed that the decrease of the flame propagation speed of rich mixture was less than that of lean mixture at highly diluted conditions. However, the inhomogeneous distribution of residual gas led to asymmetric development of flame propagation. The high temperature, strong dilution and rich mixture created local auto-ignition sites which were located in front of the main flame and gradually merged with the main flame.
Technical Paper

Expansion of external EGR effective region and influence of dilution on boosted operation of a downsized turbocharged GDI engine

2019-12-19
2019-01-2252
Engine downsizing is an effective technology to lower automotive CO2 emissions. However, the high load low speed regions are plagued with knocking combustion that are usually overcome by retarding the ignition. This interferes with the efficiency gains due to very late combustion. This paper reports the use of Exhaust Gas Recirculation (EGR) on a Ford Ecoboost 1l downsized gasoline turbocharged direct injection (GTDI) engine to improve efficiency by optimising combustion phasing unlocked by the improved knock resistance with EGR dilution. Further ignition system upgrades are tested for impact towards further efficiency improvements. 75mJ (standard) and 120mJ (high energy) ignition systems were compared. The experimental results showed that the brake specific fuel consumption (BSFC) can be improved by 5.6% with EGR dilution at 25%. When considering combined effects of EGR and high energy ignition upon engine fuel economy, the BSFC gain improves to 7.9%.
Technical Paper

Investigation on Knock Resistance with Turbulent Jet Ignition at Different Engine Load in an Optical Engine

2019-12-19
2019-01-2151
This research was focused on the effect of pre-chamber ignition and compared the knock limit of normal spark ignition in the main chamber and pre-chamber jet ignition combustion in a spark ignition gasoline engine. Experiments were conducted in a single-cylinder engine with optical access. Engine was operated with stoichiometric air/fuel mixtures at 1200 rev/min and different inlet pressures of 1, 1.2, and 1.4 bar. No auxiliary fuel was injected into the pre-chamber when jet-ignition mode was used. The results show that significant knock limit extension can be realized with use of a pre-chamber ignition unit. The main differences in engine performance, heat release and combustion, knock resistance and flame propagation were compared between the pre-chamber ignition and conventional spark ignition in the main chamber by in-cylinder pressure measurements and high-speed flame chemiluminescence imaging.
Technical Paper

Integrated CFD-Experimental Methodology for the Study of a Dual Fuel Heavy Duty Diesel Engine

2019-09-09
2019-24-0093
This paper deals with the experimental and numerical investigation of a 2.0 litre single cylinder Heavy Duty Diesel Engine fuelled by natural gas and diesel oil in Dual Fuel mode. Due to the gaseous nature of the main fuel and to the high compression ratio of the diesel engine, reduced emissions can be obtained. An experimental study has been carried out at three different load level (25%, 50% and 75% of full engine load). Basing on experimental data, the authors recreated a 45° mesh sector of the engine cylinder and performed CFD simulations for the cases at 50% and 75% load levels. Numerical simulations were carried out on the 3D code Ansys FORTE. The aim of this work is to study combustion phenomena and, in particular, the interaction between natural gas and diesel oil, respectively represented by methane and n-dodecane. A reduced kinetic scheme for methane auto-ignition was implemented while for n-dodecane two set of reactions were utilised.
Technical Paper

Experimental Studies of Gasoline Auxiliary Fueled Turbulent Jet Igniter at Different Speeds in Single Cylinder Engine

2019-09-09
2019-24-0105
Turbulent Jet Ignition (TJI) is a pre-chamber ignition system for an otherwise standard gasoline spark ignition engine. TJI works by injecting chemically active turbulent jets to initiate combustion in a premixed fuel/air mixture. The main advantage of TJI is its ability to ignite and burn, completely, very lean fuel/air mixtures in the main chamber charge. This occurs with a very fast burn rate due to the widely distributed ignition sites that consume the main charge rapidly. Rapid combustion of lean mixtures leads to lower exhaust emissions due to more complete combustion at a lower temperature. For this research, the effectiveness of the Mahle TJI system on combustion stability, lean limit and emissions in a single cylinder spark engine fueled with gasoline at different speeds was investigated. The combustion and heat release process was analyzed and the exhaust emissions were measured.
Technical Paper

The Application of Controlled Auto-Ignition Gasoline Engines -The Challenges and Solutions

2019-04-02
2019-01-0949
Controlled Auto-Ignition (CAI) combustion, also known as Homogeneous Charge Compression Ignition (HCCI), has the potential to simultaneously reduce the fuel consumption and nitrogen oxides emissions of gasoline engines. However, narrow operating region in loads and speeds is one of the challenges for the commercial application of CAI combustion to gasoline engines. Therefore, the extension of loads and speeds is an important prerequisite for the commercial application of CAI combustion. The effect of intake charge boosting, charge stratification and spark-assisted ignition on the operating range in CAI mode was reviewed. Stratified flame ignited (SFI) hybrid combustion is one form to achieve CAI combustion under the conditions of highly diluted mixture caused by the flame in the stratified mixture with the help of spark plug.
X