Refine Your Search

Search Results

Standard

Use Cases for Communication Between Plug-in Vehicles and Off-Board DC Charger

2023-08-31
CURRENT
J2836/2_202308
This SAE Information Report, SAE J2836-2, establishes use cases and general information for communication between plug-in electric vehicles (PEVs) and the DC off-board charger. Where relevant, this document notes, but does not formally specify, interactions between the vehicle and vehicle operator. This applies to the off-board DC charger for conductive charging, which supplies DC current to the vehicle battery of the electric vehicle through a SAE J1772 hybrid coupler or SAE J1772 AC Level 2-type coupler on DC power lines, using the AC power lines or the pilot line for power line communication (PLC), or dedicated communication lines that are further described in SAE J2847-2. The specification supports DC energy transfer via forward power flow (FPF) from grid-to-vehicle. The relationship of this document to the others that address PEV communications is further explained in Section 5.
Standard

Broadband PLC Communication for Plug-in Electric Vehicles

2023-05-24
CURRENT
J2931/4_202305
This SAE Technical Information Report SAE J2931/4 establishes the specifications for physical and data-link layer communications using broadband Power Line Communications (PLC) between the plug-In electric vehicle (PEV) and the electric vehicle supply equipment (EVSE) DC off-board-charger. This document deals with the specific modifications or selection of optional features in HomePlug Green PHY v1.1 (HomePlug GP1.1) necessary to support the automotive charging application over Control Pilot lines as described in SAE J1772™. PLC may also be used to connect directly to the Utility smart meter or home area network (HAN), and may technically be applied to the AC mains, both of which are outside the scope of this document.
Standard

Wireless Power Transfer for Heavy-Duty Electric Vehicles

2022-12-16
CURRENT
J2954/2_202212
The published SAE J2954 standard established an industry-wide specification that defines acceptable criteria for interoperability, electromagnetic compatibility, EMF, minimum performance, safety, and testing for wireless power transfer (WPT) for light-duty plug-in electric vehicles. This SAE Information Report, SAE J2954/2, defines new power transfer levels in the higher power ranges needed for heavy-duty electric vehicles. This document addresses the requirements based on these charge levels and different vehicle applications as a first step in the process of completing a standard that the industry can use, both for private (fleet) and public wireless power transfer, including for charging electric vehicle batteries. This document is the first step in a process towards HD static and dynamic WPT. This document lacks specific requirements and solutions, for which field data is needed.
Standard

Communication for Wireless Power Transfer Between Light-Duty Plug-in Electric Vehicles and Wireless EV Charging Stations

2022-10-09
WIP
J2847/6

SAE J2847/6 establishes minimum requirements for communication between an electric vehicle and an inductive battery charging system for wireless power transfer (WPT). Where relevant, this document notes—but does not formally specify—interactions between the vehicle and vehicle operator.

This document leverages the work of the SAE J2954 Alignment and Controls Sub-Team in the Wireless Power Transfer and Alignment Task Force by extending a JSON-based message set (protocol) originally developed to bench test wireless energy transfer interoperability between unmatched Ground Assembly (GA) and Vehicle Assembly (VA) systems (i.e., components manufactured by different companies). SAE J2847/6 furthers that work by adding messages sufficient to indicate that proper coil alignment has been achieved, initialize the sub-systems for wireless charging, ramp-up to full power, perform active wireless power transfer, and terminate the WPT session.

Standard

Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Terminology

2022-09-30
CURRENT
J1715_202209
This SAE Information Report contains definitions for HEV, PHEV, and EV terminology. It is intended that this document be a resource for those writing other HEV, PHEV, and EV documents, specifications, standards, or recommended practices.
Standard

Wireless Power Transfer for Light-Duty Plug-in/Electric Vehicles and Alignment Methodology

2022-08-26
CURRENT
J2954_202208
The SAE J2954 standard establishes an industry-wide specification that defines acceptable criteria for interoperability, electromagnetic compatibility, EMF, minimum performance, safety, and testing for wireless power transfer (WPT) of light-duty plug-in electric vehicles. The specification defines various charging levels that are based on the levels defined for SAE J1772 conductive AC charge levels 1, 2, and 3, with some variations. A standard for WPT based on these charge levels enables selection of a charging rate based on vehicle requirements, thus allowing for better vehicle packaging and ease of customer use. The specification supports home (private) charging and public wireless charging. In the near term, vehicles that are able to be charged wirelessly under SAE J2954 should also be able to be charged conductively by SAE J1772 plug-in chargers. SAE J2954 addresses unidirectional charging, from grid to vehicle; bidirectional energy transfer may be evaluated for a future standard.
Standard

Use Cases for Diagnostic Communication for Plug-in Electric Vehicles

2021-06-10
CURRENT
J2836/4_202106
This SAE Surface Vehicle Technical Information Report, SAE J2836/4, establishes diagnostic use cases between plug-in electric vehicles (PEV) and the electric vehicle supply equipment (EVSE). As PEVs are deployed and include both plug-in hybrid electric (PHEV) and battery electric (BEV) vehicle variations, failures of the charging session between the EVSE and PEV may include diagnostics particular to the vehicle variations. This document describes the general information required for diagnostics and SAE J2847/4 will include the detail messages to provide accurate information to the customer and/or service personnel to identify the source of the issue and assist in resolution. Existing vehicle diagnostics can also be added and included during this charging session regarding issues that have occurred or are imminent to the EVSE or PEV, to assist in resolution of these items.
Standard

Wireless Power Transfer for Light-Duty Plug-in/Electric Vehicles and Alignment Methodology

2020-10-20
HISTORICAL
J2954_202010
The SAE J2954 standard establishes an industry-wide specification that defines acceptable criteria for interoperability, electromagnetic compatibility, EMF, minimum performance, safety, and testing for wireless power transfer (WPT) of light-duty plug-in electric vehicles. The specification defines various charging levels that are based on the levels defined for SAE J1772 conductive AC charge levels 1, 2, and 3, with some variations. A standard for WPT based on these charge levels enables selection of a charging rate based on vehicle requirements, thus allowing for better vehicle packaging and ease of customer use. The specification supports home (private) charging and public wireless charging. In the near term, vehicles that are able to be charged wirelessly under SAE J2954 should also be able to be charged conductively by SAE J1772 plug-in chargers. SAE J2954 addresses unidirectional charging, from grid to vehicle; bidirectional energy transfer may be evaluated for a future standard.
Standard

Communication for Wireless Power Transfer Between Light-Duty Plug-in Electric Vehicles and Wireless EV Charging Stations

2020-09-29
CURRENT
J2847/6_202009
SAE J2847/6 establishes minimum requirements for communication between an electric vehicle and an inductive battery charging system for wireless power transfer (WPT). Where relevant, this document notes—but does not formally specify—interactions between the vehicle and vehicle operator. This document leverages the work of the SAE J2954 Alignment and Controls Sub-Team in the Wireless Power Transfer and Alignment Task Force by extending a JSON-based message set (protocol) originally developed to bench test wireless energy transfer interoperability between unmatched Ground Assembly (GA) and Vehicle Assembly (VA) systems (i.e., components manufactured by different companies). SAE J2847/6 furthers that work by adding messages sufficient to indicate that proper coil alignment has been achieved, initialize the sub-systems for wireless charging, ramp-up to full power, perform active wireless power transfer, and terminate the WPT session.
Standard

Power Quality Test Procedures for Plug-In Electric Vehicle Chargers

2019-08-27
WIP
J2894/2
This recommended practice provides test procedures for evaluating PEV chargers for the parameters established in SAE J2894/1, Power Quality Requirements for Plug-In Electric Vehicle Chargers. In addition, this Recommended Practice provides procedures for evaluating EVSE/charger/battery/vehicle systems in terms of energy efficiency, which is a subset of power quality. This expansion of scope from J2894/1 was requested by the stakeholders, and it provides relevance to the system level analyses that are current in state and federal processes. In accordance, the scope includes the energy storage system and the input and output of that system.

In consideration of evaluation, a system boundary is established. The system boundary defines the tested elements and the measurement points. The system boundary for most of the systems expected to be evaluated under this Recommended Practice is shown in Figure 1.

Standard

SAE Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Charge Coupler

2017-10-13
HISTORICAL
J1772_201710
This SAE Standard covers the general physical, electrical, functional and performance requirements to facilitate conductive charging of EV/PHEV vehicles in North America. This document defines a common EV/PHEV and supply equipment vehicle conductive charging method including operational requirements and the functional and dimensional requirements for the vehicle inlet and mating connector.
Standard

Use Cases for Diagnostic Communication for Plug-in Electric Vehicles

2017-06-26
HISTORICAL
J2836/4_201706
This SAE Surface Vehicle Technical Information Report, J2836/4, establishes diagnostic use cases between Plug-in Electric Vehicles (PEV) and the Electric Vehicle Supply Equipment (EVSE). As PEVs are deployed and include both Plug-In Hybrid Electric (PHEV) and Battery Electric (BEV) Vehicle variations, failures of the charging session between the EVSE and PEV may include diagnostics particular to the vehicle variations. This document describes the general information required for diagnostics and J2847/4 will include the detail messages to provide accurate information to the customer and/or service personnel to identify the source of the issue and assist in resolution. Existing vehicle diagnostics can also be added and included during this charging session regarding issues that have occurred or are imminent to the EVSE or PEV, to assist in resolution of these items.
Standard

SAE Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Charge Coupler

2016-02-03
HISTORICAL
J1772_201602
This SAE Standard covers the general physical, electrical, functional and performance requirements to facilitate conductive charging of EV/PHEV vehicles in North America. This document defines a common EV/PHEV and supply equipment vehicle conductive charging method including operational requirements and the functional and dimensional requirements for the vehicle inlet and mating connector.
Standard

Power Quality Test Procedures for Plug-In Electric Vehicle Chargers

2015-03-17
CURRENT
J2894/2_201503
This recommended practice provides test procedures for evaluating PEV chargers for the parameters established in SAE J2894/1, Power Quality Requirements for Plug-In Electric Vehicle Chargers. In addition, this Recommended Practice provides procedures for evaluating EVSE/charger/battery/vehicle systems in terms of energy efficiency, which is a subset of power quality. This expansion of scope from J2894/1 was requested by the stakeholders, and it provides relevance to the system level analyses that are current in state and federal processes. In accordance, the scope includes the energy storage system and the input and output of that system. In consideration of evaluation, a system boundary is established. The system boundary defines the tested elements and the measurement points. The system boundary for most of the systems expected to be evaluated under this Recommended Practice is shown in Figure 1.
Standard

Broadband PLC Communication for Plug-in Electric Vehicles

2014-10-21
HISTORICAL
J2931/4_201410
This SAE Technical Information Report SAE J2931/4 establishes the specifications for physical and data-link layer communications using broadband Power Line Communications (PLC) between the plug-In electric vehicle (PEV) and the electric vehicle supply equipment (EVSE) DC off-board-charger. This document deals with the specific modifications or selection of optional features in HomePlug Green PHY v1.1 (HomePlug GP1.1) necessary to support the automotive charging application over Control Pilot lines as described in SAE J1772™. PLC may also be used to connect directly to the Utility smart meter or home area network (HAN), and may technically be applied to the AC mains, both of which are outside the scope of this document.
Standard

SAE Electric Vehicle Inductively Coupled Charging

2014-06-05
CURRENT
J1773_201406
This SAE Recommended Practice establishes the minimum interface compatibility requirements for electric vehicle (EV) inductively coupled charging for North America. This part of the specification is applicable to manually connected inductive charging for Levels 1 and 2 power transfer. Requirements for Level 3 compatibility are contained in Appendix B. Recommended software interface messaging requirements are contained in Appendix A. This type of inductively coupled charging is generally intended for transferring power at frequencies significantly higher than power line frequencies. This part of the specification is not applicable to inductive coupling schemes that employ automatic connection methods or that are intended for transferring power at power line frequencies.
Standard

SAE Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Charge Coupler

2012-10-15
HISTORICAL
J1772_201210
This SAE Recommended Practice covers the general physical, electrical, functional and performance requirements to facilitate conductive charging of EV/PHEV vehicles in North America. This document defines a common EV/PHEV and supply equipment vehicle conductive charging method including operational requirements and the functional and dimensional requirements for the vehicle inlet and mating connector.
Standard

Broadband PLC Communication for Plug-in Electric Vehicles

2012-07-26
HISTORICAL
J2931/4_201207
This SAE Technical Information Report SAE J2931/4 establishes the specifications for physical and data-link layer communications using broadband Power Line Communications (PLC) between the Plug-In Vehicle (PEV) and the Electric Vehicle Supply Equipment (EVSE) DC off-board-charger. This document deals with the specific modifications or selection of optional features in HomePlug Green PHY v1.1 necessary to support the automotive charging application over Control Pilot lines as described in SAE J1772™. PLC may also be used to connect directly to the Utility smart meter or Home Area Network (HAN), and may technically be applied to the AC mains, both of which are outside the scope of this document.
X