Refine Your Search

Topic

Search Results

Standard

Standard Four-Letter Coding as an Identification Method for Alternative Fuel Vehicles

2024-03-01
CURRENT
J3108/1_202403
SAE J3108 RP provides fuel and hazard guidance for first and second responders of incidents associated with alternative fueled vehicles. The intent of this SAE J3108-1 RP is to remain with the limited number of seven intuitive and colored letters contained in each of the first two letter positions (72=49). However, the use of four letters plus nine digits (to not use either 0 or o) permits up to 1185921 unique identifiers (334) for future expansion. The RP is not intended to replace the standards for SAE J2990 format emergency response guide (ERG) created by automotive manufacturers for use at the scene of an emergency. Automotive OEMs are encouraged to reference this RP for industry design guidance when creating vehicle requirements and ERGs. This coding should be consistent with other vehicle badging with the goal of providing additional clarity.
Standard

Plug-In Electrical Vehicle Charge Rate Reporting and Test Procedures

2024-02-28
WIP
J2953/4
This document facilitates clear and consistent comparisons of realistic charging capabilities of passenger vehicles via commercially available EVSE. Common test procedures and metrics are established for both vehicles and EVSE operating without limitations in nominal conditions. This document does not attempt to address performance variations of EV-EVSE interactions outside of nominal conditions such as extreme temperatures, variable SOCs, and so on.
Standard

Use Cases for Plug-In Vehicle Communication as a Distributed Energy Resource

2024-02-16
CURRENT
J2836/3_202402
This SAE Information Report establishes use cases for a plug-in electric vehicle (PEV) communicating with a DER Managing Entity (DME) as a distributed energy resource (DER) which is supported by SAE J2847/3. This document also provides guidance for updates to SAE J2847/2 to allow an inverter in an EVSE to use the PEV battery when operating together as either a DER or as a power source for loads which are not connected in parallel with the utility grid. Beyond these two specific communication objectives, this document is also intended to serve as a broad guide to the topic of reverse power flow (discharging) and vehicle-to-grid (V2G) technology.
Standard

North American Charging System (NACS) for Electric Vehicles

2024-01-24
WIP
J3400
This Recommended Practice covers the general physical, electrical, functional, safety, and performance requirements for conductive power transfer to an electric vehicle using a connector, which can be hand-mated and is capable of transferring either DC or AC single-phase power using two current-carrying contacts.
Standard

SAE Electric Vehicle and Plug-in Hybrid Electric Vehicle Conductive Charge Coupler

2024-01-22
CURRENT
J1772_202401
This SAE Standard covers the general physical, electrical, functional, and performance requirements to facilitate conductive charging of EV/PHEV vehicles in North America. This document defines a common EV/PHEV and supply equipment vehicle conductive charging method, including operational requirements and the functional and dimensional requirements for the vehicle inlet and mating connector.
Standard

Electric Vehicle Charging Adapter Safety and OEM Qualified Device Designation

2023-12-01
WIP
J3400/1
This document covers the general physical, electrical, functional, and performance requirements for adapters connected to standards conforming conductive power transfer via handheld conductive coupler capable of transferring either DC or single-phase power using two current-carrying contacts. The focus is on defining the process to evaluate the suitability of adapters to SAE J3400 vehicle inlets.
Standard

Instructions for Using Plug-In Electric Vehicle (PEV) Communications, Interoperability and Security Documents

2023-10-30
WIP
J2836
This SAE Information Report J2836 establishes the instructions for the documents required for the variety of potential functions for PEV communications, energy transfer options, interoperability and security. This includes the history, current status and future plans for migrating through these documents created in the Hybrid Communication and Interoperability Task Force, based on functional objective (e.g., (1) if I want to do V2G with an off-board inverter, what documents and items within them do I need, (2) What do we intend for V3 of SAE J2953, …).
Standard

Communication Between Plug-in Vehicles and Customers

2023-10-06
CURRENT
J2847/5_202310
This SAE Recommended Practice establishes the communication for the variety of potential functions for plug-in electric vehicle (PEV) customers. This includes features for use case items in SAE J2836/3 that may be PEV/customer optional equipment, such as AC vehicle-to-load (V2L) and AC vehicle-to-vehicle systems. These systems conform to SAE J1772 with variations required to identify to the PEV bidirectional onboard charger (OBC) the mode of operation changes and output requirements. SAE has published multiple documents relating to PEV and vehicle-to-grid (V2G) interfaces. The various document series are listed below, with a brief explanation of each. Figure 1 shows the sequencing of these documents and their primary function (e.g., the SAE J2836 and SAE J2847/1 documents start with smart charging, SAE J2836 and SAE J2847/2 then adds DC charging, etc.). The intent is to have subsequent slash sheets complement each other as more functions and features are included.
Standard

Wireless Power Transfer for Light-Duty Plug-in/Electric Vehicles and Alignment Methodology

2023-09-18
WIP
J2954
The SAE J2954 standard establishes an industry-wide specification that defines acceptable criteria for interoperability, electromagnetic compatibility, EMF, minimum performance, safety, and testing for wireless power transfer (WPT) of light-duty plug-in electric vehicles. The specification defines various charging levels between WPT 1-3 (3.7kVA to 11.1kVA). A standard for WPT based on these charge levels enables selection of a charging rate based on vehicle requirements, thus allowing for better vehicle packaging and ease of customer use. The specification supports home (private) charging and public wireless charging also establishing a universal Ground Assembly WPT 3 (GA) at 11.1kVA which is interoperable to Vehicle Assemblies (VA) WPT 1-3. SAE J2954 contains requirements for safety, performance, and interoperability of WPT. It also contains recommended methods for evaluating electromagnetic emissions, but the requirements and test procedures are controlled by regulatory bodies.
Standard

xEV Labels to Assist First and Second Responders, and Others

2023-09-06
WIP
J3108
This recommended practice prescribes clear and consistent labeling methodology for communicating important xEV high voltage safety information. Examples of such information include identifying key high voltage system component locations and high voltage disabling points. These recommendations are based on current industry best practices identified by the responder community. Although this recommended practice is written for xEVs with high voltage systems, these recommendations can be applied to any vehicle type.
Standard

Use Cases for Communication Between Plug-in Vehicles and Off-Board DC Charger

2023-08-31
CURRENT
J2836/2_202308
This SAE Information Report, SAE J2836-2, establishes use cases and general information for communication between plug-in electric vehicles (PEVs) and the DC off-board charger. Where relevant, this document notes, but does not formally specify, interactions between the vehicle and vehicle operator. This applies to the off-board DC charger for conductive charging, which supplies DC current to the vehicle battery of the electric vehicle through a SAE J1772 hybrid coupler or SAE J1772 AC Level 2-type coupler on DC power lines, using the AC power lines or the pilot line for power line communication (PLC), or dedicated communication lines that are further described in SAE J2847-2. The specification supports DC energy transfer via forward power flow (FPF) from grid-to-vehicle. The relationship of this document to the others that address PEV communications is further explained in Section 5.
Standard

Performance Characterization of Electrified Powertrain Motor-Drive Subsystem

2023-08-01
CURRENT
J2907_202308
This document was developed to provide a method of obtaining repeatable measurements that accurately reflects the performance of a propulsion electric drive subsystem, whose output is used in an electrified vehicle regardless of complexity or number of energy sources. The purpose is to provide a familiar and easy-to-understand performance rating. Whenever there is an opportunity for interpretation of the document, a good faith effort shall be made to obtain the typical in-service performance and characteristics and avoid finding the best possible performance under the best possible conditions. Intentional biasing of operating parameters or assembly tolerances to optimize performance for this test shall not be considered valid results in the scope of this document.
Standard

Broadband PLC Communication for Plug-in Electric Vehicles

2023-05-24
CURRENT
J2931/4_202305
This SAE Technical Information Report SAE J2931/4 establishes the specifications for physical and data-link layer communications using broadband Power Line Communications (PLC) between the plug-In electric vehicle (PEV) and the electric vehicle supply equipment (EVSE) DC off-board-charger. This document deals with the specific modifications or selection of optional features in HomePlug Green PHY v1.1 (HomePlug GP1.1) necessary to support the automotive charging application over Control Pilot lines as described in SAE J1772™. PLC may also be used to connect directly to the Utility smart meter or home area network (HAN), and may technically be applied to the AC mains, both of which are outside the scope of this document.
Standard

Electric Vehicle Power Transfer System Using Conductive Automated Connection Devices Infrastructure-Mounted Pantograph (Cross-Rail) Connection

2023-05-05
CURRENT
J3105/1_202305
This document details one of the connections of the SAE J3105 document. The connections are referenced in the scope of the main document SAE J3105. SAE J3105/1 details the infrastructure-mounted pantograph, or cross-rail connection. All the common requirements are defined in the main document; the current document provides the details of the connection. This document covers the connection interface relevant requirements for an electric vehicle power transfer system using a conductive automated connection device (ACD) based on a cross-rail design. To allow interoperability for on-road vehicles (in particular, buses and coaches), one configuration is described in this document. Other configurations may be used for non-standard applications (for example, mining trucks or port vehicles).
Standard

Electric Vehicle Power Transfer System Using Conductive Automated Connection Devices Vehicle-Mounted Pantograph (Bus-Up)

2023-05-05
CURRENT
J3105/2_202305
This document details one of the connections of the SAE J3105 document. The connections are referenced in the scope of the main document SAE J3105. SAE J3105/2 details the vehicle-mounted pantograph, or the bus-up connection. All the common requirements are defined in the main document; the current document provides the details of the connection. This document covers the connection interface relevant requirements for an electric vehicle power transfer system using a conductive automated charging device based on a conventional rail vehicle pantograph design. To allow interoperability for on-road vehicles (in particular, buses and coaches), one configuration is described in this document. Other configurations may be used for non-standard applications (for example, mining trucks or port vehicles).
Standard

Electric Vehicle Power Transfer System Using Conductive Automated Connection Devices

2023-05-05
CURRENT
J3105_202305
This document covers the general physical, electrical, functional, testing, and performance requirements for conductive power transfer, primarily for vehicles using a conductive ACD connection capable of transferring DC power. It defines conductive power transfer methods, including the infrastructure electrical contact interface, the vehicle connection interface, the electrical characteristics of the DC supply, and the communication system. It also covers the functional and dimensional requirements for the vehicle connection interface and supply equipment interface. New editions of the documents shall be backwards compatible with the older editions. There are also sub-documents which are identified by a SAE J3105/1, SAE J3105/2, and SAE J3105/3. These will be specific requirements for a specific interface defined in the sub-document.
Standard

Dynamic Wireless Power Transfer for both Light and Heavy Duty Vehicles (SAE RP J2954/3)

2023-04-20
WIP
J2954/3
The SAE J2954 standard establishes an industry-wide specification that defines acceptable criteria for Light Duty EVs and SAE RP J2954/2 establishes the same for Heavy Duty. SAE RP SAE J2954. SAE RP J2954/3 establishes interoperability, electromagnetic compatibility, EMF, minimum performance, safety, and testing for dynamic wireless power transfer (D-WPT) of both light and heavy duty plug-in electric vehicles. The specification defines various charging levels that are based on the levels defined for SAE J1772 conductive AC charge levels as SAE J2954/1 & SAE J2954/2 with some variations. A standard for WPT based on these charge levels enables selection of a charging rate based on vehicle requirements, thus allowing for better vehicle packaging and ease of customer use. SAE J2954/3 addresses unidirectional charging, from grid to vehicle; bidirectional energy transfer may be evaluated for a future standard.
Standard

Interconnection Requirements for Onboard, Grid Support Inverter Systems

2023-03-31
WIP
J3072
This SAE J3072 Standard establishes requirements for a grid support inverter system function which is integrated into a plug-in electric vehicle (PEV) which connects in parallel with an electric power system (EPS) by way of conductively coupled, electric vehicle supply equipment (EVSE). This standard also defines the communication between the PEV and the EVSE required for the PEV onboard inverter function to be configured and authorized by the EVSE for discharging at a site. The requirements herein are intended to be used in conjunction with IEEE 1547 and IEEE 1547.1. This standard shall also support interactive inverters which conform to the requirements of IEEE 1547-2003 and IEEE 1547.1-2005, recognizing that many utility jurisdictions may not authorize interconnection.
X