Refine Your Search

Search Results

Technical Paper

Considerations of Periodical Technical Inspection of Vehicles with deNOx Systems

An independent periodical technical inspection (PTI)*) of vehicles is proposed in the last time as a better prevention against increased emissions of the fleet. Several projects focused on the Diesel vehicles (HD & LD) and on the functionality of the exhaust aftertreatment systems as a key element for lowering emissions of a vehicle or machine. The present paper summarizes the results obtained on 3 modern passenger cars Euro 6b (with EGR, DOC, DPF & SCR) during load jumps, representing the heat-up or cool-down behaviour of the exhaust system. The portable devices for PTI were tested together with the stationary measuring systems of the engine laboratory. In the second part of the report, the present knowledge and proposals of supplementary test procedures (like IUC or PTI) were shortly described.
Technical Paper

PN-Emissions of Gasoline Cars MPI and Potentials of GPF

Further efforts to reduce the air pollution from traffic are undertaken worldwide and the filtration of exhaust gas will also be increasingly applied on gasoline cars (GPF1 … gasoline particle filter). In the present paper, some results of investigations of nanoparticles from four MPI gasoline cars are represented. The measurements were performed at vehicle tailpipe and in CVS-tunnel. Moreover, two variants of GPF were investigated on a high-emitting modern vehicle, including analytics of PAH and attempts of soot loading in road application. The modern MPI vehicles can emit a considerable amount of PN, which in some cases attains the level of Diesel exhaust gas without DPF and can pass over the actual European limit value for GDI (6.0 x 1011 #/km). The GPF-technology offers in this respect further poten-tials to reduce the PN-emissions of traffic.
Technical Paper

Experimental Investigation of Fuel Injection and Spark Timing for the Combustion of n-Butanol and iso-Butanol and Their Blends with Gasoline in a Two-Cylinder SI Engine

In this study, the combustion of butanol, neat and mixed with gasoline, was investigated on a 0.6 liter two-cylinder spark ignition engine with fully adjustable fuel injection and spark timing, coupled with an eddy current dynamometer. Two isomers of butanol, n-butanol and iso-butanol, were examined. This basic parameter study gives information about potential requirements of engine control systems for butanol FFV. Compared to the traditionally used ethanol, butanol does not exhibit hygroscopic behaviour, is chemically less aggressive and has higher energy density. On other hand, different laminar burning velocity and higher boiling temperature of butanol, compared to gasoline, requires some countermeasures to keep the engine operation reliable and efficient.
Technical Paper

Investigations of NO2 in Legal Test Procedure for Diesel Passenger Cars

As a result of increased use of catalytic exhaust aftertreatment systems of vehicles and the low-sulfur Diesel fuels there is an increasing share of nitrogen dioxide NO2 in the ambient air of several cities. This is in spite of lowering the summary nitric oxides NOx emissions from vehicles. NO2 is much more toxic than nitrogen monoxide NO and it will be specially considered in the next legal testing procedures. There are doubts about the accuracy of analyzing the reactive substances from diluted gas and this project has the objective to show how NO2 is changing as it travels down through the exhaust- and the CVS systems. For legal measurements of NO2 a WLTP-DTP subgroup (Worldwide Light Duty Test Procedures - Diesel Test Procedures) proposed different combinations of NOx-analyzers and analysis of NO and NOx. Some of these set-ups were tested in this work.
Technical Paper

Investigations of SDPF -Diesel Particle Filter with SCR Coating for HD-Applications

Diesel exhaust gas aftertreatment systems, which include the selective catalytic reduction (SCR)*) for reduction of NOx are necessary to fulfil the latest legal requirements and are extensively used in the heavy duty (HD) sector. The present paper informs about some results obtained with SCR and with SDPF (a DPF with SCR-coating) on a medium duty research engine Iveco F1C. Beside the limited gaseous emission components NH3, NO2 and N2O were measured. The analysis of nanoparticle emissions was performed with SMPS and CPC. The integration of functions of filtration and NOx-reduction in one element of exhaust aftertreatment system offers several advantages and is widely investigated and considered as a market solution.
Technical Paper

Particle Emissions of Modern Handheld Machines

The progressing exhaust gas legislation for on- and off-road vehicles includes gradually the nanoparticle count limits. The invisible nanoparticles from different emission sources penetrate like a gas into the living organisms and may cause several health hazards. The present paper shows some results of a modern chain saw with & without oxidation catalyst, with Alkylate fuel and with different lube oils. The measurements focused specially on particulate emissions. Particulates were analysed by means of gravimetry (PM) and granulometry SMPS (PN). In this way the reduction potentials with application of the best materials (fuel, lube oil, ox-cat.) were indicated. It has been shown that the particle mass (PM) and the particle numbers (PN), which both consisting almost exclusively of unburned lube-oil, can attain quite high values, but can be influenced by the lube oil quality and can be considerably reduced with an oxidation catalyst.
Technical Paper

VERTdePN Quality Test Procedures of DPF+SCR Systems

The combined exhaust gas aftertreatment systems (DPF+SCR) are the most efficient way and the best available technology (BAT) to radically reduce the critical Diesel emission components particles (PM&NP) and nitric oxides (NOx). SCR (selective catalytic reduction) is regarded as the most efficient deNOx-system, diesel particle filters are most efficient for soot abatement. Today, several suppliers offer combined systems for retrofitting of HD vehicles. Quality standards for those quite complex systems and especially for retrofit systems are needed to enable decisions of several authorities and to estimate the potentials of improvements of the air quality in highly populated agglomerations. The present paper informs about the VERTdePN *) quality test procedures, which were developed in an international network project with the same name 2007-2011 (VERT … Verification of Emission Reduction Technologies; dePN … decontamination, disposal of PM / NP and of NOx).
Technical Paper

Testing of SCR-Systems on HD-Vehicles-TeVeNOx

The selective catalytic reduction SCR is extensively used for NOx reduction of recent HD-vehicles. There are some manufacturers and some applications of SCR as retrofit systems (mostly for the low emission zones LEZ and in combination with a DPF). In charge of Swiss authorities AFHB investigated several SCR-systems, or (DPF+SCR)-systems on HD-vehicles and proposed a simplified quality test procedure of those systems. This procedure can especially be useful for the admission of retrofit systems but it can also be helpful for the quality check of OEM-systems. The project name was TeVeNOx - Testing of Vehicles with NOx reduction systems. In the present paper the test procedures will be described and some specific results will be discussed.
Technical Paper

Investigations of Changes of the 2-Stroke Scooters Nanoparticles in the Exhaust- and CVS-System

Nanoparticle emissions of two 2-stroke scooters were investigated along the exhaust and the CVS (Constant Volume Sampling) systems. Two configurations were tested: regular full-flow dilution configuration (denoted as “closed”) and also a modified sampling configuration (denoted as “open”). The scooters represent two distinct modern technologies. One scooter had direct injection TSDI*) (Two-Stroke Direct Injection). The other had a carburettor. Depending on the technology, the scooters produce different kind of aerosols (state-of-oxidation and SOF content). Moreover, the scooters were operated with and without oxidation catalyst. The tests were performed at two constant vehicular speeds (20 km/h and 40 km/h). The measuring procedures are those established during the previous research of the Swiss Scooter Network. The nanoparticulate emissions were measured using SMPS (Scanning Mobility Particle Sizer) and DC (Diffusion Charging) sensors.
Technical Paper

NO2-Formation in Diesel Particle Filter Systems

NO₂ is much more toxic than NO. The average proportion of NO₂ in exhaust gases of vehicles increases significantly due to the use of oxidation catalysts and catalytic coatings in the exhaust gas systems during the last decades combined with generalization of using low sulfur fuels. Diesel oxidation catalysts (DOC) and Pt-containing DPF coatings are widely used to support the regeneration of particle filters, being a source of strongly increased production of NO₂. The present work shows some examples and summarizes the experiences in this matter performed at the Laboratories for IC-Engines & Exhaust Emissions Control (AFHB) of the University of Applied Sciences Biel-Bienne, Switzerland, during some research activities on engine dynamometers in the years 2010-2012.
Technical Paper

Metal Oxide Particle Emissions from Diesel and Petrol Engines

All internal combustion piston engines emit solid nanoparticles. Some are soot particles resulting from incomplete combustion of fuels, or lube oil. Some particles are metal compounds, most probably metal oxides. A major source of metal compound particles is engine abrasion. The lube oil transports these abraded particles into the combustion zone. There they are partially vaporized and ultrafine oxide particles formed through nucleation [1]. Other sources are the metallic additives to the lube oil, metallic additives in the fuel, and debris from the catalytic coatings in the exhaust-gas emission control devices. The formation process results in extremely fine particles, typically smaller than 50 nm. Thus they intrude through the alveolar membranes directly into the human organism. The consequent health risk necessitates a careful investigation of these emissions and effective curtailment.
Technical Paper

Influences of Different Exhaust Filter Configurations on Emissions of a 2-Stroke Scooter Peugeot TSDI

Exhaust emissions measurements of a small 2-S Scooter Peugeot TSDI*), 50cc with different particle filters have been performed in this present work according to the measuring procedures, which were established in the previous research in the Swiss Scooter Network, [1, 2, 3, 4, 5, 6, 7, 8, 9]. The investigated particle filtration materials were supplied from different manufacturers as samples without specifications and they were applied by the research laboratory in a special muffler able to be taken apart. The investigated scooter represented a modern (2002) 2-stroke technology with direct injection, with oxidation catalyst and with injection of the lube oil to the intake air. Since there is a special concern about the particle emissions of the small engines, the particle mass and nanoparticle measurements were systematically carried out. The nanoparticulate emissions were measured by means of SMPS (CPC) and NanoMet*).
Technical Paper

DPF Systems for High Sulfur Fuels

During the first decade of diesel particle filter development and deployment in cars, trucks, buses and underground sites, DPF regeneration methods were engineered that were compatible with the then prevalent high sulfur content in the fuel ≻ 2000 ppm. The mainly used methods were burners, electrical heaters, replaceable filters and non-precious metal fuel additives. Low sulfur diesel fuel became only available from 1996 in Sweden, 1998 in Switzerland, and after 2000 everywhere in Europe. Thus, the deployment of precious metal catalytic converters was feasible both as original equipment and retrofitting of in-use engines. The so-called CRT particle filters using PGM-catalysis for providing NO₂ for low temperature regeneration became very successful wherever ULSD was available.
Journal Article

Unregulated Emissions with TWC, Gasoline & CNG

Analysis of non-legislated engine-emission components, with different exhaust-gas after-treatment techniques, is an important air quality objective. This paper reports the results for various nitrogen oxides, ammonia and differentiated hydrocarbons emitted at part load from a small 4-S SI engine. It was operated with gasoline, with CNG and with two different three-way catalytic converters. CNG produces less HC and less aromatics. But the HC conversion rate is insufficient. This is due to the lower exhaust gas temperatures, at part load with CNG, and due to the higher stability of light HCs. CNG affects the λ-regulation window, of the investigated system, such that the NOx conversion rate is lowered. In the rich domain of the λ-regulation window, the NO & NOx emissions after catalyst were lowest, while the NH₃ formation was most intense, and vice versa.
Technical Paper

(Particle) Emissions of Small 2-& 4-Stroke Scooters with (Hydrous) Ethanol Blends

The objectives of the present work are to investigate the regulated and unregulated (particle) emissions of a classical and modern 2-stroke and a typical 4-stroke scooter with different ethanol blend fuels. There is also comparison of two different ethanol fuels: pure ethanol (E) *) and hydrous ethanol (EH) which contains 3.9% water and is denatured with 1.5% gasoline. Special attention is paid in this research to the hydrous ethanol, since the production costs of hydrous ethanol are much less than those for (dry) ethanol. The vehicles are with carburettor and without catalyst, which represents the most frequent technology in Eastern Asia and offers the information of engine-out emissions. Exhaust emissions measurements have been performed with fuels containing ethanol (E), or hydrous ethanol (EH) in the portion of 5, 10, 15 and 20% by volume. During the test systematical analysis of particle mass (PM) and nano-particles counts (NP) were carried out.
Technical Paper

Release of Fiber Fragments from Fiber-Based Ceramic Honeycomb Filters and Substrates-Methods and Results

Advances in emission control technologies have demanded development of new ceramic chemistries and improved microstructures in catalytic substrates and especially in diesel particulate filters. High porosity filters are desirable, as they decrease engine backpressure and enable application of advanced catalysts including, but not limited to, multi-functional filters (MFF). A significant recent development has been in the use of ceramic fibers to create cross-linked microstructures in extruded honeycomb ceramics. This development allows high porosities to be attained while maintaining mechanical strength. However, according to the World Health Organization, certain classes of ceramic fibers are considered to have adverse health effects if released in air and inhaled.
Technical Paper

Catalyst Aging and Effects on Particle Emissions of 2-Stroke Scooters

An active oxidation catalyst is an efficient measure to reduce not only gaseous components (CO, HC), but also particle emissions (mostly oil condensates) of a small 2-stroke engine with lost oil lubrication. Since the 2- and 3-wheelers with 2-stroke propulsion are still a very serious source of air pollution worldwide in many urban areas, it is important to have a look on some consequences of an improperly working catalyst. The present paper shows some results of user-oriented aging of catalyst on the vehicle and results of limited emissions and unlimited (nano)particles during the catalysts screening tests. The works are a part of an international scooter network project, which was performed (2004 to 2007) in the Laboratories for IC-Engines & Exhaust Emission Control of the University of Applied Sciences, Biel, Switzerland with main support of the Swiss Federal Office of Environment (BAFU), Swiss Petrol Union (EV) and Swiss Lubes (VSS).
Technical Paper

(Nano) Particles from 2-S Scooters: SOF / INSOF; Improvements of Aftertreatment; Toxicity

Limited and non-regulated emissions of scooters were analysed during several annual research programs of the Swiss Federal Office of Environment (BAFU) *). Small scooters, which are very much used in the congested centers of several cities, are a remarkable source of air pollution. Therefore every effort to reduce the emissions is an important contribution to improve the air quality in urban centers. In the present work detailed investigations of particle emissions of different 2-stroke scooters with direct injection and with carburettor were performed. The nanoparticulate emissions were measured by means of SMPS, (CPC) and NanoMet. Also the particle mass emission (PM) was measured with the same method as for Diesel engines. Extensive analyses of PM-residuum for SOF/INSOF, PAH and toxicity equivalence (TEQ), were carried out in an international project network. Particle mass emission (PM) of 2-S Scooters consists mostly of SOF.
Technical Paper

Diesel NO/NO2/NOX Emissions - New Experiences and Challenges

During the VERT *) testing of different DPF systems it was remarked, that the oxidation catalyst converts sometimes a big part of NO to NO2, producing on the one hand a more toxic composition of the exhaust gases and causing on the other hand measuring artefacts, which tend to underestimate of NO2 and NOx by the cold NOx - measurement. The present work summarizes the experiences in this matter elaborated at the Laboratories for IC-Engines & Exhaust Emissions Control (AFHB) of the University of Applied Sciences Biel-Bienne, Switzerland, during several VERT activities and didactic projects on engine and chassis dynamometers in the years 2000-2006.
Technical Paper

Research on Particle Emissions of Modern 2-Stroke Scooters

Limited and nonlimited emissions of scooters were analysed during several annual research programs of the Swiss Agency of Environment Forests and Landscape (SAEFL, BUWAL)*). Small scooters, which are very much used in the congested centers of several cities are a remarkable source of air pollution. Therefore every effort to reduce the emissions is an important contribution to improve the air quality in urban centers. In the present work detailed investigations of particle emissions of different 2-stroke scooters with direct injection and with carburetor were performed. The nanoparticulate emissions with different lube oils and fuels were measured by means of SMPS, (CPC) and NanoMet *). Also the particle mass emission (PM) was measured with the same method as for Diesel engines. Extensive analyses of PM-residuum for PAH & SOF/INSOF, as well as for VOC were carried out in an international project network.