Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

On the HCCI Octane Boosting Effects of γ-Valerolactone

2019-09-09
2019-24-0026
This study examined the octane boosting effects of γ-valerolactone, a fuel derived from lignocellulosic biomass, under Homogeneous Charge Compression Ignition (HCCI) combustion mode. The experiments were performed in a Cooperative Fuel Research (CFR) engine under four sets of conditions defined by the combinations of intake temperatures and rotation speed. Octane boosting effects were rated with FACE (Fuel for Advanced Combustion Engine) J gasoline as a base fuel. Due to the non-miscibility of γ-valerolactone into FACE J, a new approach was proposed in which the octane boosting effect of a mixture comprised up of two-third γ-valerolactone and one-third ethanol was investigated. To evaluate the effect of γ-valerolactone, the octane boosting effect of pure ethanol into FACE J was also investigated such that comparison can be drawn. Further attempts were made to extract the octane boosting effects of pure γ-valerolactone.
Technical Paper

Blending Octane Number of 1-Butanol and Iso-Octane with Low Octane Fuels in HCCI Combustion Mode

2018-09-10
2018-01-1681
Due to their physical and chemical properties, alcohols such as ethanol and methanol when blended with gasoline provide high anti-knock quality and hence efficient engines. However, there are few promising properties of 1-butanol similar to conventional gasoline which make it a favorable choice for internal combustion engines. Previously the author showed that by blending ethanol and methanol with low octane fuels, non-linear increase in the HCCI fuel number occurs in HCCI combustion mode. Very few studies have been conducted on the use of 1-butanol in HCCI combustion mode, therefore for this work, 1-butanol with a RON 96 was selected as the high octane fuel. Three low octane fuels with octane number close to 70 were used as a base fuel. Two of the low octane fuels are Fuels for Advanced Combustion Engines (FACE gasolines), more specifically FACE I and FACE J and also primary reference fuel (PRF 70) were selected.
Technical Paper

Blending Octane Number of Toluene with Gasoline-like and PRF Fuels in HCCI Combustion Mode

2018-04-03
2018-01-1246
Future internal combustion engines demand higher efficiency but progression towards this is limited by the phenomenon called knock. A possible solution for reaching high efficiency is Octane-on-Demand (OoD), which allows to customize the antiknock quality of a fuel through blending of high-octane fuel with a low octane fuel. Previous studies on Octane-on-Demand highlighted efficiency benefits depending on the combination of low octane fuel with high octane booster. The author recently published works with ethanol and methanol as high-octane fuels. The results of this work showed that the composition and octane number of the low octane fuel is significant for the blending octane number of both ethanol and methanol. This work focuses on toluene as the high octane fuel (RON 120). Aromatics offers anti-knock quality and with high octane number than alcohols, this work will address if toluene can provide higher octane enhancement.
Technical Paper

Blending Octane Number of Ethanol on a Volume and Molar Basis in SI and HCCI Combustion Modes

2017-10-08
2017-01-2256
The blending behavior of ethanol in five different hydrocarbon base fuels with octane numbers of approximately 70 and 84 was examined under Spark-Ignited (SI) and Homogeneous Charge Compression Ignited (HCCI) operating conditions. The Blending octane number (BON) was used to characterize the blending behavior on both a volume and molar basis. Previous studies have shown that the blending behavior of ethanol generally follows several well-established rules. In particular, non-linear blending effects are generally observed on a volume basis (i.e. BON > RON or MON of pure ethanol; 108 and 89, respectively), while linear blending effects are generally observed on a molar basis (i.e. BON = RON or MON of pure ethanol). This work firstly demonstrates that the non-linear volumetric blending effects traditionally observed under SI operating conditions are also observed under HCCI operating conditions.
Technical Paper

Blending Behavior of Ethanol with PRF 84 and FACE A Gasoline in HCCI Combustion Mmode

2017-09-04
2017-24-0082
The blending of ethanol with PRF (Primary reference fuel) 84 was investigated and compared with FACE (Fuels for Advanced Combustion Engines) A gasoline surrogate which has a RON of 83.9. Previously, experiments were performed at four HCCI conditions but the chemical effect responsible for the non-linear blending behavior of ethanol with PRF 84 and FACE A was not understood. Hence, in this study the experimental measurements were simulated using zero-dimensional HCCI engine model with detailed chemistry in CHEMKIN PRO. Ethanol was used as an octane booster for the above two base fuels in volume concentration of 0%, 2%, 5% and 10%. The geometrical data and the intake valve closure conditions were used to match the simulated combustion phasing with the experiments. Low temperature heat release (LTHR) was detected by performing heat release analysis.
Technical Paper

Effect of Additives on Combustion Characteristics of a Natural Gas Fueled HCCI Engine

2014-10-13
2014-01-2662
Homogeneous Charge Compression Ignition (HCCI) is among the new generation of combustion modes which can be applied to internal combustion engines. It is currently the topic of numerous studies in various fields. Due to its operating process, HCCI ensures a good efficiency, similar to that of compression ignition (CI) engines, and low particulate and nitric oxide (NOx) emissions. However, before promoting the use of this kind of engine, several challenges must be addressed, in particular controlling the combustion. Recent work showed that the combustion phasing can be controlled using low concentrations of ozone, an oxidizing chemical species. As ozone generators become increasingly compact, the integration of this kind of device in passenger cars can be considered. The present study investigates the effect of ozone on the combustion of different fuel mixtures. The engine was fuelled with various blends: a 95%methane/5%propane mixture and three different methane/hydrogen mixtures.
X