Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Influence of Driver Input on the Touchdown Conditions and Risk of Rollover in Case of Steering Induced Soil-Trip Rollover Crashes

2016-04-05
2016-01-1514
Some rollover testing methodologies require specification of vehicle kinematic parameters including travel speed, vertical velocity, roll rate, and pitch angle, etc. at the initiation of vehicle to ground contact, which have been referred to as touchdown conditions. The complexity of the vehicle, as well as environmental and driving input characteristics make prediction of realistic touchdown conditions for rollover crashes, and moreover, identification of parameter sensitivities of these characteristics, is difficult and expensive without simulation tools. The goal of this study was to study the sensitivity of driver input on touchdown parameters and the risk of rollover in cases of steering-induced soil-tripped rollovers, which are the most prevalent type of rollover crashes. Knowing the range and variation of touchdown parameters and their sensitivities would help in picking realistic parameters for simulating controlled rollover tests.
Technical Paper

Occupant Kinematics in Laboratory Rollover Tests: PMHS Response

2014-11-10
2014-22-0011
The objective of the current study was to characterize the whole-body kinematic response of restrained PMHS in controlled laboratory rollover tests. A dynamic rollover test system (DRoTS) and a parametric vehicle buck were used to conduct 36 rollover tests on four adult male PMHS with varied test conditions to study occupant kinematics during the rollover event. The DRoTS was used to drop/catch and rotate the test buck, which replicated the occupant compartment of a typical mid-sized SUV, around its center of gravity without roof-to-ground contact. The studied test conditions included a quasi-static inversion (4 tests), an inverted drop and catch that produced a 3 g vertical deceleration (4 tests), a pure dynamic roll at 360 degrees/second (11 tests), and a roll with a superimposed drop and catch produced vertical deceleration (17 tests). Each PMHS was restrained with a three-point belt and was tested in both leading-side and trailing-side front-row seating positions.
Technical Paper

Rollover Initiation Simulations for Designing Rollover Initiation Test System (RITS)

2014-04-01
2014-01-0530
Some rollover test methods, which impose a touchdown condition on a test vehicle, have been developed to study vehicle crashworthiness and occupant protection in rollover crashes. In ground-tripped rollover crashes, speed, steering maneuver, braking, vehicle inertial and geometric properties, topographical and road design characteristics, and soil type can all affect vehicle touchdown conditions. It is presumed that while there may be numerous possible combinations of kinematic metrics (velocity components and orientation) at touchdown, there are also numerous combinations of metrics that are not likely to occur in rollover crashes. To determine a realistic set of touchdown conditions to be used in a vehicle rollover crash test, a lateral deceleration sled-based non-destructive rollover initiation test system (RITS) with a fully programmable deceleration pulse is in development.
Technical Paper

Test Methodology and Initial Results from a Dynamic Rollover Test System

2013-04-08
2013-01-0468
The goal of this study is to present the methods employed and results obtained during the first six tests performed with a new dynamic rollover test system. The tests were performed to develop and refine test methodology and instrumentation methods, examine the potential for variation in test parameters, evaluate how accurately actual touchdown test parameters could be specified, and identify problems or limitations of the test fixture. Five vehicles ranging in size and inertia from a 2011 Toyota Yaris (1174 kg, 379 kg m₂) to a 2002 Ford Explorer (2408 kg, 800 kg m₂) were tested. Vehicle kinematic parameters at the instant of vehicle-to-road contact varied across the tests: roll rates of 211-268 deg/s, roll angles of 133-199 deg, pitch angles of -12 deg to 0 deg, vertical impact velocities of 1.7 to 2.7 m/s, and road velocities of 3.0-8.8 m/s.
Technical Paper

Optical Measurement of High-Rate Dynamic Vehicle Roof Deformation during Rollover

2013-04-08
2013-01-0470
The goals of this study were to examine the dynamic force-deformation and kinematic response of a late model van subjected to an inverted drop test and to evaluate the accuracy of three-dimensional multi-point roof deformation measurements made by an optical system mounted inside the vehicle. The inverted drop test was performed using a dynamic rollover test system (Kerrigan et al., 2011 SAE) with an initial vehicle pitch of −5 degrees, a roll of +155 degrees and a vertical velocity of 2.7 m/s at initial contact. Measurements from the optical system, which was composed of two high speed imagers and a commercial optical processing software were compared to deformation measurements made by two sets of three string potentiometers. The optical and potentiometer measurements reported similar deformations: peak resultant deformations varied by 0.7 mm and 3 ms at the top of the A-pillar, and 1.7 mm and 2 ms at the top of the B-pillar.
Journal Article

Design of a Dynamic Rollover Test System

2011-04-12
2011-01-1116
A dynamic rollover test system (DRoTS) capable of simulating rollover crashes in a laboratory was designed for research use at the University of Virginia. The goal of the current study is to describe the system's capabilities and specifications as well as to explore the limitations of the system's ability to simulate rollover crashes. The test apparatus was designed to permit simulation of a single roof-to-ground interaction of a rollover crash with the potential to be modified for evaluation of pre-roof contact occupant motion. Special considerations were made to permit testing of both dummies and post-mortem human surrogates in both production vehicles and a parametric test buck. DRoTS permits vertical translation, pitch, and roll of the test vehicle while constraining longitudinal and lateral translations and yaw. The study details the ranges of test parameters capable with the DRoTS and evaluates the limitations of the system relative to rollover crash conditions.
X