Refine Your Search

Topic

Author

Search Results

Technical Paper

Energy Savings Impact of Eco-Driving Control Based on Powertrain Characteristics in Connected and Automated Vehicles: On-Track Demonstrations

2024-04-09
2024-01-2606
This research investigates the energy savings achieved through eco-driving controls in connected and automated vehicles (CAVs), with a specific focus on the influence of powertrain characteristics. Eco-driving strategies have emerged as a promising approach to enhance efficiency and reduce environmental impact in CAVs. However, uncertainty remains about how the optimal strategy developed for a specific CAV applies to CAVs with different powertrain technologies, particularly concerning energy aspects. To address this gap, on-track demonstrations were conducted using a Chrysler Pacifica CAV equipped with an internal combustion engine (ICE), advanced sensors, and vehicle-to-infrastructure (V2I) communication systems, compared with another CAV, a previously studied Chevrolet Bolt electric vehicle (EV) equipped with an electric motor and battery.
Technical Paper

Experimental and Numerical Study of Water Injection under Gasoline Direct Injection Engine Relevant Conditions

2023-04-11
2023-01-0313
Water injection has been used to reduce the charge temperature and mitigate knocking due to its higher latent heat of vaporization compared to gasoline fuel. When water is injected into the intake manifold or into the cylinder, it evaporates by absorbing heat energy from the surrounding and results in charge cooling. However, the effect of detailed evaporation process on the combustion characteristics under gasoline direct injection relevant conditions still needs to be investigated. Therefore, spray study was firstly conducted using a multi-hole injector by injecting pure water and water-methanol mixture into constant volume combustion chamber (CVCC) at naturally aspirated and boosted engine conditions. The target water-fuel ratio was fixed at 0.5. Mie-scattering and schlieren images of sprays were analyzed to study spray characteristics, and evaluate the amount of water vaporization.
Technical Paper

Operation of a Natural Gas Direct Injection Compression Ignition Single Cylinder Research Engine

2023-04-11
2023-01-0260
The medium and heavy-duty powertrain industry trend is to reduce reliance on diesel fuel and is aligned with continued efforts of achieving ultra-low emissions and high brake efficiencies. Compression Ignition (CI) of late cycle Directly Injected (DI) Natural Gas (NG) shows the potential to match diesel performance in terms of brake efficiency and power density, with the benefit of utilizing a lower carbon content fuel. A primary challenge is to achieve stable ignition of directly injected NG over a wide engine speed and load range without the need for a separate ignition source. This project aims to demonstrate the CI of DI NG through experimental studies with a Single Cylinder Research Engine (SCRE), leading to the development of a mono-fueled NG engine with equivalent performance to that of current diesel technology, 25% lower CO2 emissions, and low engine out methane emissions.
Journal Article

On-Track Demonstration of Automated Eco-Driving Control for an Electric Vehicle

2023-04-11
2023-01-0221
This paper presents the energy savings of an automated driving control applied to an electric vehicle based on the on-track testing results. The control is a universal speed planner that analytically solves the eco-driving optimal control problem, within a receding horizon framework and coupled with trajectory tracking lower-level controls. The automated eco-driving control can take advantage of signal phase and timing (SPaT) provided by approaching traffic lights via vehicle-to-infrastructure (V2I) communications. At each time step, the controller calculates the accelerator and brake pedal position (APP/BPP) based on the current state of the vehicle and the current and future information about the surrounding environment (e.g., speed limits, traffic light phase).
Technical Paper

Development of Multiple Injection Strategy for Gasoline Compression Ignition High Performance and Low Emissions in a Light Duty Engine

2022-03-29
2022-01-0457
The increase in regulatory demand to reduce CO2 emissions resulted in a focus on the development of novel combustion modes such as gasoline compression ignition (GCI). It has been shown by others that GCI can improve the overall engine efficiency while achieving soot and NOx emissions targets. In comparison with diesel fuel, gasoline has a higher volatility and has more resistance to autoignition, therefore, it has a longer ignition delay time which facilitates better mixing of the air-fuel charge before ignition. In this study, a GCI combustion system has been tested using a 2.2L compression ignition engine as part of a US Department of Energy funded project. For this purpose, a multiple injection strategy was developed to improve the pressure rise rates and soot emission levels for the same engine out NOx emissions.
Technical Paper

Sensor Fusion Approach for Dynamic Torque Estimation with Low Cost Sensors for Boosted 4-Cylinder Engine

2021-04-06
2021-01-0418
As the world searches for ways to reduce humanity’s impact on the environment, the automotive industry looks to extend the viable use of the gasoline engine by improving efficiency. One way to improve engine efficiency is through more effective control. Torque-based control is critical in modern cars and trucks for traction control, stability control, advanced driver assistance systems, and autonomous vehicle systems. Closed loop torque-based engine control systems require feedback signal(s); indicated mean effective pressure (IMEP) is a useful signal but is costly to measure directly with in-cylinder pressure sensors. Previous work has been done in torque and IMEP estimation using crankshaft acceleration and ion sensors, but these systems lack accuracy in some operating ranges and the ability to estimate cycle-cycle variation.
Technical Paper

Probing Spark Discharge Behavior in High-speed Cross-flows through Modeling and Experimentation

2020-04-14
2020-01-1120
This paper presents a combined numerical and experimental investigation of the characteristics of spark discharge in a spark-ignition engine. The main objective of this work is to gain insights into the spark discharge process and early flame kernel development. Experiments were conducted in an inert medium within an optically accessible constant-volume combustion vessel. The cross-flow motion in the vessel was generated using a previously developed shrouded fan. Numerical modeling was based on an existing discharge model in the literature developed by Kim and Anderson. However, this model is applicable to a limited range of gas pressures and flow fields. Therefore, the original model was evaluated and improved to predict the behavior of spark discharge at pressurized conditions up to 45 bar and high-speed cross-flows up to 32 m/s. To accomplish this goal, a parametric study on the spark channel resistance was conducted.
Technical Paper

An Analytical Energy-budget Model for Diesel Droplet Impingement on an Inclined Solid Wall

2020-04-14
2020-01-1158
The study of spray-wall interaction is of great importance to understand the dynamics that occur during fuel impingement onto the chamber wall or piston surfaces in internal combustion engines. It is found that the maximum spreading length of an impinged droplet can provide a quantitative estimation of heat transfer and energy transformation for spray-wall interaction. Furthermore, it influences the air-fuel mixing and hydrocarbon and particle emissions at combusting conditions. In this paper, an analytical model of a single diesel droplet impinging on the wall with different inclined angles (α) is developed in terms of βm (dimensionless maximum spreading length, the ratio of maximum spreading length to initial droplet diameter) to understand the detailed impinging dynamic process.
Technical Paper

Experimental Investigation of the Compression Ignition Process of High Reactivity Gasoline Fuels and E10 Certification Gasoline using a High-Pressure Direct Injection Gasoline Injector

2020-04-14
2020-01-0323
Gasoline compression ignition (GCI) technology shows the potential to obtain high thermal efficiencies while maintaining low soot and NOx emissions in light-duty engine applications. Recent experimental studies and numerical simulations have indicated that high reactivity gasoline-like fuels can further enable the benefits of GCI combustion. However, there is limited empirical data in the literature studying the gasoline compression ignition process at relevant in-cylinder conditions, which are required for further optimizing combustion system designs. This study investigates the temporal and spatial evolution of the compression ignition process of various high reactivity gasoline fuels with research octane numbers (RON) of 71, 74 and 82, as well as a conventional RON 97 E10 gasoline fuel. A ten-hole prototype gasoline injector specifically designed for GCI applications capable of injection pressures up to 450 bar was used.
Technical Paper

A Connected Controls and Optimization System for Vehicle Dynamics and Powertrain Operation on a Light-Duty Plug-In Multi-Mode Hybrid Electric Vehicle

2020-04-14
2020-01-0591
This paper presents an overview of the connected controls and optimization system for vehicle dynamics and powertrain operation on a light-duty plug-in multi-mode hybrid electric vehicle developed as part of the DOE ARPA-E NEXTCAR program by Michigan Technological University in partnership with General Motors Co. The objective is to enable a 20% reduction in overall energy consumption and a 6% increase in electric vehicle range of a plug-in hybrid electric vehicle through the utilization of connected and automated vehicle technologies. Technologies developed to achieve this goal were developed in two categories, the vehicle control level and the powertrain control level. Tools at the vehicle control level include Eco Routing, Speed Harmonization, Eco Approach and Departure and in-situ vehicle parameter characterization.
Technical Paper

Impinged Diesel Spray Combustion Evaluation for Indirect Air-Fuel Mixing Processes and Its Comparison with Non-Vaporing Impinging Spray Under Diesel Engine Conditions

2019-04-02
2019-01-0267
Under low-temperature combustion for the high fuel efficiency and low emissions achievement, the fuel impingement often occurs in diesel engines with direct injection especially for a short distance between the injector and piston head/cylinder wall. Spray impingement plays an important role in the mixing-controlled combustion phase since it affects the air-fuel mixing rate through the disrupted event by the impingement. However, the degree of air entrainment into the spray is hard to be directly evaluated. Since the high spray expansion rate could allow more opportunity for fuel to mix with air, in this study, the expansion rate of impinged flame is quantified and compared with the spray expansion rate under non-vaporizing conditions. The experiments were conducted in a constant volume combustion chamber with an ambient density of 22.8 kg/m3 and the injection pressure of 150 MPa.
Technical Paper

Spark Mechanism in High Speed Flow

2019-04-02
2019-01-0729
An experimental study was performed to investigate spark ignition and subsequent spark stretch evolution in an inert environment at high- flow velocities up to 32 m/s across the spark plug gap in a constant-volume optical combustion-vessel at pressures representative of those in an engine. The vessel is capable of generating various in-cylinder thermodynamic conditions representative of light-duty spark ignition engines. The characteristic behavior of the spark was investigated using both a high-speed optical diagnostics and electrical measurement. Charge gas pressures were varied from 15 to 45 bar. Results show that the spark, flowing downstream the spark plug, is subject to short circuits of the spark channel and/or restrikes. The frequency of the restrike increased with increased flow velocity and charge gas pressure and decreased discharge current level.
Journal Article

Investigation and Optimization of Cam Actuation of an Over-Expanded Atkinson Cycle Spark-Ignited Engine

2019-04-02
2019-01-0250
An over-expanded spark ignited engine was investigated in this work via engine simulation with a design constrained, mechanically actuated Atkinson cycle mechanism. A conventional 4-stroke spark-ignited turbo-charged engine with a compression ratio of 9.2 and peak brake mean effective pressure of 22 bar was selected for the baseline engine. With geometry and design constraints including bore, stroke, compression ratio, clearance volume at top dead center (TDC) firing, and packaging, one over-expanded engine mechanism with over expansion ratio (OER) of 1.5 was designed. Starting with a validated 1D engine simulation model which included calibration of the in-cylinder heat transfer model and SI turbulent combustion model, investigations of the Atkinson engine including cam optimization was studied. The engine simulation study included the effects of offset of piston TDC locations as well as different durations of the 4-strokes due to the mechanism design.
Technical Paper

Spray-Wall Dynamics of High-Pressure Impinging Combustion

2019-01-15
2019-01-0067
The fuel spray impingement on the piston head and/or chamber often occurs in compact IC engines. The impingement plays one of the key roles in combustion because it affects the air-fuel mixing process. In this study, the impinged combustion has been experimentally investigated to understand the mechanism and dynamics of flame-wall interaction. The experiments were performed in a constant volume combustion chamber over a wide range of ambient conditions. The ambient temperature was varied from 800 K to 1000 K and ambient gas oxygen was varied from 15% to 21%. Diesel fuel was injected with an injection pressure of 150 MPa into ambient gas at a density of 22.8 kg/m3. The natural luminosity technique was applied in the experiments to explore the impinged combustion process. High-speed images were taken using a high-speed camera from two different views (bottom and side). An in-house Matlab program was used to post-process the images.
Technical Paper

Examination of Factors Impacting Unaccounted Fuel Post GDI Fuel Injector Closing

2018-04-03
2018-01-0300
The characteristics of gasoline sprayed directly into combustion chambers are of critical importance to engine out emissions and combustion system development. The optimization of the spray characteristics to match the in-cylinder flow field, chamber geometry, and spark location is a vital tasks during the development of an engine combustion strategy. Furthermore, the presence of liquid fuel during combustion in Spark-Ignition (SI) engines causes increased hydro-carbon (HC) emissions. Euro 6, LEVIII, and US Tier 3 emissions regulations reduce the allowable particulate mass significantly from the previous standards. LEVIII standards reduce the acceptable particulate emission to 1 mg/mile. A good DISI strategy vaporizes the correct amount of fuel just in time for optimal power output with minimal emissions. The opening and closing phases of DISI injectors are crucial to this task as the spray produces larger droplets during both theses phases.
Technical Paper

High Pressure Impinging Spray Film Formation Characteristics

2018-04-03
2018-01-0312
Fuel film formed in the spray-piston or cylinder wall impingement plays a critical role in engine performance and emissions. In this paper, the fuel film formation and the relevant film characteristics resulting from the liquid spray impinging on a flat plate were investigated in a constant volume combustion vessel by Refractive Index Matching (RIM) technique. The liquid film thickness was firstly calibrated with two different proportional mixtures (5% n-dodecane and 95% n-heptane; 10% n-dodecane and 90% n-heptane by volume) pumped out from a precise syringe to achieve an accurate calibration. After calibration, n-heptane fuel from a side-mounted single-hole diesel injector was then injected on a roughened glass with the same optical setup. The ambient temperature and the plate temperature are set to 423 K with the fuel temperature of 363 K.
Technical Paper

Evaluation of Diesel Spray-Wall Interaction and Morphology around Impingement Location

2018-04-03
2018-01-0276
The necessity to study spray-wall interaction in internal combustion engines is driven by the evidence that fuel sprays impinge on chamber and piston surfaces resulting in the formation of wall films. This, in turn, may influence the air-fuel mixing and increase the hydrocarbon and particulate matter emissions. This work reports an experimental and numerical study on spray-wall impingement and liquid film formation in a constant volume combustion vessel. Diesel and n-heptane were selected as test fuels and injected from a side-mounted single-hole diesel injector at injection pressures of 120, 150, and 180 MPa on a flat transparent window. Ambient and plate temperatures were set at 423 K, the fuel temperature at 363 K, and the ambient densities at 14.8, 22.8, and 30 kg/m3. Simultaneous Mie scattering and schlieren imaging were carried out in the experiment to perform a visual tracking of the spray-wall interaction process from different perspectives.
Technical Paper

Investigation of Flow Conditions and Tumble near the Spark Plug in a DI Optical Engine at Ignition

2018-04-03
2018-01-0208
Tumble motion plays a significant role in modern spark-ignition engines in that it promotes mixing of air/fuel for homogeneous combustion and increases the flame propagation speed for higher thermal efficiency and lower combustion variability. Cycle-by-cycle variations in the flow near the spark plug introduce variability to the initial flame kernel development, stretching, and convection, and this variability is carried over to the entire combustion process. The design of current direct-injection spark-ignition engines aims to have a tumble flow in the vicinity of the spark plug at the time of ignition. This work investigates how the flow condition changes in the vicinity of the spark plug throughout the late compression stroke via high-speed imaging of a long ignition discharge arc channel and its stretching, and via flow field measurement by particle imaging velocimetry.
Journal Article

Investigation of Impacts of Spark Plug Orientation on Early Flame Development and Combustion in a DI Optical Engine

2017-03-28
2017-01-0680
The influence of spark plug orientation on early flame kernel development is investigated in an optically accessible gasoline direct injection homogeneous charged spark ignition engine. This investigation provides visual understanding and statistical characterization of how spark plug orientation impacts the early flame kernel and thus combustion phasing and engine performance. The projected images of flame kernel were captured through natural flame chemiluminescence with a high-speed camera at 10,000 frames per second, and the ignition secondary discharge voltage and current were measured with a 10 MHz DAQ system. The combustion metrics were determined using measurement from a piezo-electric in-cylinder pressure transducer and real-time engine combustion analyzer. Three spark plug orientations with two different electrode designs were studied. The captured images of the flame were processed to yield 2D and 1D probability distributions.
Technical Paper

Air Charge and Residual Gas Fraction Estimation for a Spark-Ignition Engine Using In-Cylinder Pressure

2017-03-28
2017-01-0527
An accurate estimation of cycle-by-cycle in-cylinder mass and the composition of the cylinder charge is required for spark-ignition engine transient control strategies to obtain required torque, Air-Fuel-Ratio (AFR) and meet engine pollution regulations. Mass Air Flow (MAF) and Manifold Absolute Pressure (MAP) sensors have been utilized in different control strategies to achieve these targets; however, these sensors have response delay in transients. As an alternative to air flow metering, in-cylinder pressure sensors can be utilized to directly measure cylinder pressure, based on which, the amount of air charge can be estimated without the requirement to model the dynamics of the manifold.
X