Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Chemical Kinetics Study on Ignition Characteristics of Biodiesel Surrogates

2011-08-30
2011-01-1926
Methyl butanoate (MB) and methyl decanoate (MD) are surrogates for biodiesel fuels. According to computational results with their detailed reaction mechanisms, MB and MD indicate shorter ignition delays than long alkanes such as n-heptane and n-dodecane do at an initial temperature over 1000 K. The high ignitability of these methyl esters was computationally analyzed by means of contribution matrices proposed by some of the authors. Due to the high acidity of an α-H atom in a carbonyl compound, hydroperoxy radicals are generated out of the equilibrium between forward and backward reactions of O₂ addition to methyl ester radicals by the internal transfer of an α-H atom in the initial stage of an ignition process. Some of the hydroperoxy methyl ester radicals can generate OH to activate initial reactions. MB has an efficient CH₃O formation path via CH₃ generated by the β-scission of an MB radical which has a radical site on the α-C atom to the carbonyl group.
Technical Paper

Spray and Combustion Characteristics of Reformulated Biodiesel with Mixing of Lower Boiling Point Fuel

2007-04-16
2007-01-0621
Authors propose the reformulation technique of physical properties of Biodiesel Fuel (BDF) by mixing lower boiling point fuels. In this study, waste cooking oil methyl ester (B100), which have been produced in Kyoto city, is used in behalf of BDF. N-Heptane (C7H16) and n-Dodecane (C12H26) are used as low and medium boiling point fuel. Mixed fuel of BDF with lower boiling point fuels have lighter quality as compared with neat BDF. This result is based on the chemical-thermo dynamical liquid-vapor equilibrium theory. This paper describes fundamental spray and combustion characteristics of mixed fuel of B100 with lower boiling point fuels as well as the reformulation technique. By mixing lower boiling point fuel, lighter quality fuels can be refined. Thus, mixed fuels have higher volatility and lower viscosity. Therefore, vaporization of mixed fuel spray is promoted and liquid phase penetration of mixed fuel shortens as compared with that of neat BDF.
Technical Paper

Study on Characteristics of Auto-Ignition and Combustion of Unsteady Synthetic Gas Jet

2007-04-16
2007-01-0629
It is thought that the synthetic gas, including hydrogen and carbon monoxide, has a potential to be an alternative fuel for internal combustion engines, because a heating value of the synthetic gas is higher than one of hydrogen or natural gas. A purpose of this study is to acquire stable auto-ignition and combustion of the synthetic gas which is supposed to be applied into a direct-injection compression ignition engine. In this study, the effects of ambient gas temperatures and oxygen concentrations on auto-ignition characteristics of the synthetic gas with changing percentage of hydrogen (H2) or carbon monoxide (CO) concentrations in the synthetic gas. An electronically-controlled, hydraulically-actuated gas injector was used to control a precise injection timing and period of gaseous fuels, and the experiments were conducted in an optically accessible, constant-volume combustion chamber under simulated quiescent diesel engine conditions.
Technical Paper

Modeling Atomization and Vaporization Processes of Flash-Boiling Spray

2004-03-08
2004-01-0534
Flash-boiling occurs when a fuel is injected to a combustion chamber where the ambient pressure is lower than the saturation pressure of the fuel. It has been known that flashing is a favorable mechanism for atomizing liquid fuels. On the other hand, alternative fuels, such as gaseous fuels and oxygenated fuels, are used to achieve low exhaust emissions in recent years. In general, most of these alternative fuels have high volatility and flash-boiling takes place easily in fuel spray, when they are injected into the combustion chamber of an internal combustion engine under high pressure. In addition, fuel design concept the multicomponent fuel with high and low volatility fuels has been proposed in the previous study in order to control the spray and combustion processes in internal combustion engine. It is found that the multicomponent fuel produce flash-boiling with an increase in the initial fuel temperature.
Technical Paper

Flame Structure and Combustion Characteristics in Diesel Combustion Fueled with Bio-diesel

2004-03-08
2004-01-0084
The Flame structure and combustion characteristics for two waste-cooking oils were investigated in detail. One fuel is the waste-cooking oil methyl esters. This fuel is actually applied to the garbage collection vehicle with DI diesel engine (B100) and the city bus (B20; 80% gas oil is mixed into B100 in volume) as an alternative fuel of gas oil in Kyoto City. Another one is the fuel with ozone treatment by removing impurities from raw waste-cooking oils. Here, in order to improve the fuel properties, kerosene is mixed 70% volume in this fuel. This mixed fuel (i-BDF) is applied into several tracks and buses in Wakayama City. In the experiments, the used fuels were gas oil, i-BDF, B100 and B20. Spray characteristics and basic combustion properties were measured inside a rapid compression and an expansion machine (RCEM).
Technical Paper

On-Board Measurement of Engine Performance and Emissions in Diesel Vehicle Operated with Bio-diesel Fuel

2004-03-08
2004-01-0083
This paper describes the results of on-board measurement of engine performance and emissions in diesel vehicle operated with bio-diesel fuels. Here, two waste-cooking oils were investigated. One fuel is a waste-cooking oil methyl esters. This fuel is actually applied to a garbage collection vehicle with DI diesel engine (B100) and the city bus (B20; 80% gas oil is mixed into B100 in volume) as an alternative fuel of gas oil in Kyoto City. Another one is a fuel with ozone treatment by removing impurities from raw waste-cooking oils. Here, in order to improve the fuel properties, kerosene is mixed 70% volume in this fuel. This mixed fuel (i-BDF) is applied into several tracks and buses in Wakayama City. Then, these 3 bio-diesel fuels were applied to the on-board experiments and the results were compared with gas oil operation case.
Technical Paper

Effects of Ambient Gas Conditions on Ignition and Combustion Process of Oxygenated Fuel Sprays

2003-05-19
2003-01-1790
This work presents the ignition delay time characteristics of oxygenated fuel sprays under simulated diesel engine conditions. A constant volume combustion vessel is used for the experiments. The fuels used in the experiments were three oxygenated fuels: diethylene glycol dibutyl ether, diethylene glycol diethyl ether, and diethylene glycol dimethyl ether. JIS 2nd class gas oil was used as the reference fuel. The ambient gas temperature and oxygen concentration were ranging from 700 to 1100K and from 21 to 9%, respectively. The results show that the ignition delay of each oxygenated fuel tested in this experiments exhibits shorter than that of gas oil fuel for the wide range of ambient gas conditions. Also, NTC (negative temperature coefficient) behavior which appears under shock tube experiment for homogenous fuel-air mixture was observed on low ambient gas oxygen concentration for each fuel. And at the condition, the ignition behavior exhibits two-stage phase.
Technical Paper

A Study of Direct Injection Diesel Engine Fueled with Hydrogen

2003-03-03
2003-01-0761
In this study, characteristics of the development and auto-ignition/combustion of hydrogen jets were investigated in a constant-volume vessel. The authors focused on the effects of the jet developing process and thermodynamic states of the ambient gas on auto-ignition delays of hydrogen jets. The results show that the ambient gas temperature and nozzle-hole diameter are significantly effective parameters. By contrast, it is clarified that the ambient gas oxygen concentration has a weak effect on the auto-ignition/combustion of hydrogen jets. Consequently, it is supposed that the mixture formation process is capable of improving the auto-ignition/combustion of hydrogen jets.
Technical Paper

Mixing and soot formation processes in transient gas jet flame

2000-06-12
2000-05-0075
A transient gas jet and its flame are the most fundamental phenomena of a transient spray and its flame breaking out in a CI engine and an SI engine with the direct injection system. In the case of CNG and LNG engines, the fuel itself is just gaseous state. The 2-LIF technique was applied to the transient gas jet to obtain the mixing process between the surroundings and it, and the simultaneous application of LII and LIS techniques were applied to the transient gas jet flame to obtain the soot formation process.
Technical Paper

Characteristics of Transient Gas Diffusion Flame

1997-10-01
972965
CNG is one of the future fuel for a CI engine. Recently, the general tendency is the use of the high pressure injection system over 100 MPa in a CI engine for the near future severe regulation. Combustion phenomenon in a CI engine with such injection system is like a transient gas diffusion flame. The flow in a gas diffusion flame was investigated by the particle image velocimetry on its 2-D images, the relative soot concentration, the temperature and the relative CO2 concentration was detected in the experiments. And the model of transient gas diffusion flame was constructed by use of experimental data.
Technical Paper

Characteristics of Free and Impinging Gas Jets by Means of Image Processing

1997-02-24
970045
A transient gas jet seems to be a model of a diesel spray because it has no vaporization process. Recently, CNG is utilized in a diesel engine. In the case of diesel engine, sprays or jets have the free state in some cases, and they are impinging surely on the piston surface in the other cases. The 2-D image of acetylene gas with tracer particles was taken by high-speed photography. In both jets, the outer shape was measured on the images and the characteristics of the internal flow was obtained by particle image velocimetry. Then, the physical models of these jets were constructed by use of experimental results.
X